4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered glucose metabolism and cell function in keloid fibroblasts under hypoxia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Keloids exhibit metabolic reprogramming including enhanced glycolysis and attenuated oxidative phosphorylation. Hypoxia induces a series of protective responses in mammalian cells. However, the metabolic phenotype of keloid fibroblasts under hypoxic conditions remains to be elucidated. The present study aimed to investigate glycolytic activity, mitochondrial function and morphology, and the HIF1α and PI3K/AKT signaling pathways in keloid fibroblasts (KFB) under hypoxic conditions. Our results showed that hypoxia promoted proliferation, migration invasion and collagen synthesis and inhibited apoptosis in KFB. The mRNA levels, protein expressions and enzyme activities of glycolytic enzymes in KFB were higher than those in normal skin fibroblasts (NFB) under normoxia. Moreover, hypoxia remarkedly upregulated glycolysis in KFB. Decreased activities of mitochondrial complexes and abnormal mitochondria were detected in KFB under normoxic conditions and the damage was aggravated by hypoxia. An intracellular metabolic profile assay suggested hypoxia increased glycolytic parameters except glycolytic reserve but inhibited the key parameters of mitochondrial function apart from H + leak. Protein levels of HIF1α and phosphorylation levels of the PI3K/AKT signaling pathway were upregulated in the context of 3% oxygen. Enhanced total reactive oxygen species (ROS), mitochondrial ROS (mitoROS) and antioxidant activities of KFB were observed in response to hypoxia. Additionally, autophagy was induced by hypoxia. Our data collectively demonstrated potentiated glycolysis and attenuated mitochondrial function under hypoxia, indicating that altered glucose metabolism regulated by hypoxia could be a therapeutic target for keloids.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The Warburg Effect: How Does it Benefit Cancer Cells?

          Cancer cells rewire their metabolism to promote growth, survival, proliferation, and long-term maintenance. The common feature of this altered metabolism is the increased glucose uptake and fermentation of glucose to lactate. This phenomenon is observed even in the presence of completely functioning mitochondria and, together, is known as the 'Warburg Effect'. The Warburg Effect has been documented for over 90 years and extensively studied over the past 10 years, with thousands of papers reporting to have established either its causes or its functions. Despite this intense interest, the function of the Warburg Effect remains unclear. Here, we analyze several proposed explanations for the function of Warburg Effect, emphasize their rationale, and discuss their controversies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism

            The altered metabolic programme of cancer cells facilitates their cell-autonomous proliferation and survival. In normal cells, signal transduction pathways control core cellular functions, including metabolism, to couple the signals from exogenous growth factors, cytokines or hormones to adaptive changes in cell physiology. The ubiquitous, growth factor-regulated phosphoinositide 3-kinase (PI3K)-AKT signalling network has diverse downstream effects on cellular metabolism, through either direct regulation of nutrient transporters and metabolic enzymes or the control of transcription factors that regulate the expression of key components of metabolic pathways. Aberrant activation of this signalling network is one of the most frequent events in human cancer and serves to disconnect the control of cell growth, survival and metabolism from exogenous growth stimuli. Here we discuss our current understanding of the molecular events controlling cellular metabolism downstream of PI3K and AKT and of how these events couple two major hallmarks of cancer: growth factor independence through oncogenic signalling and metabolic reprogramming to support cell survival and proliferation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species in cancer.

              Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                28 November 2020
                January 2021
                28 November 2020
                : 38
                : 101815
                Affiliations
                [1]Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
                Author notes
                []Corresponding author. qinzl@ 123456bjmu.edu.cn
                [∗∗ ]Corresponding author. bihongsen@ 123456bjmu.edu.cn
                Article
                S2213-2317(20)31020-X 101815
                10.1016/j.redox.2020.101815
                7718484
                33278780
                585bcfb3-b3f4-41b3-88a0-09bd1e525c8c
                © 2020 Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 2 November 2020
                : 23 November 2020
                : 24 November 2020
                Categories
                Research Paper

                keloid,fibroblasts,cell metabolism,hypoxia,redox homeostasis,autophagy

                Comments

                Comment on this article