256
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cardiac Angiogenic Imbalance Leads to Peri-partum Cardiomyopathy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peri-partum cardiomyopathy (PPCM) is a frequently fatal disease that affects women near delivery, and occurs more frequently in women with pre-eclampsia and/or multiple gestation. The etiology of PPCM, or why it associates with pre-eclampsia, remains unknown. We show here that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble Flt1 (sFlt1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by sub-clinical cardiac dysfunction, the extent of which correlates with circulating levels of sFlt1. Exogenous sFlt1 alone caused diastolic dysfunction in wildtype mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFlt1. These data strongly suggest that PPCM is in large part a vascular disease, caused by excess anti-angiogenic signaling in the peri-partum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Circulating angiogenic factors and the risk of preeclampsia.

          The cause of preeclampsia remains unclear. Limited data suggest that excess circulating soluble fms-like tyrosine kinase 1 (sFlt-1), which binds placental growth factor (PlGF) and vascular endothelial growth factor (VEGF), may have a pathogenic role. We performed a nested case-control study within the Calcium for Preeclampsia Prevention trial, which involved healthy nulliparous women. Each woman with preeclampsia was matched to one normotensive control. A total of 120 pairs of women were randomly chosen. Serum concentrations of angiogenic factors (total sFlt-1, free PlGF, and free VEGF) were measured throughout pregnancy; there were a total of 655 serum specimens. The data were analyzed cross-sectionally within intervals of gestational age and according to the time before the onset of preeclampsia. During the last two months of pregnancy in the normotensive controls, the level of sFlt-1 increased and the level of PlGF decreased. These changes occurred earlier and were more pronounced in the women in whom preeclampsia later developed. The sFlt-1 level increased beginning approximately five weeks before the onset of preeclampsia. At the onset of clinical disease, the mean serum level in the women with preeclampsia was 4382 pg per milliliter, as compared with 1643 pg per milliliter in controls with fetuses of similar gestational age (P<0.001). The PlGF levels were significantly lower in the women who later had preeclampsia than in the controls beginning at 13 to 16 weeks of gestation (mean, 90 pg per milliliter vs. 142 pg per milliliter, P=0.01), with the greatest difference occurring during the weeks before the onset of preeclampsia, coincident with the increase in the sFlt-1 level. Alterations in the levels of sFlt-1 and free PlGF were greater in women with an earlier onset of preeclampsia and in women in whom preeclampsia was associated with a small-for-gestational-age infant. Increased levels of sFlt-1 and reduced levels of PlGF predict the subsequent development of preeclampsia. Copyright 2004 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.

            Mitochondrial number and function are altered in response to external stimuli in eukaryotes. While several transcription/replication factors directly regulate mitochondrial genes, the coordination of these factors into a program responsive to the environment is not understood. We show here that PGC-1, a cold-inducible coactivator of nuclear receptors, stimulates mitochondrial biogenesis and respiration in muscle cells through an induction of uncoupling protein 2 (UCP-2) and through regulation of the nuclear respiratory factors (NRFs). PGC-1 stimulates a powerful induction of NRF-1 and NRF-2 gene expression; in addition, PGC-1 binds to and coactivates the transcriptional function of NRF-1 on the promoter for mitochondrial transcription factor A (mtTFA), a direct regulator of mitochondrial DNA replication/transcription. These data elucidate a pathway that directly links external physiological stimuli to the regulation of mitochondrial biogenesis and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.

              Adaptive thermogenesis is an important component of energy homeostasis and a metabolic defense against obesity. We have cloned a novel transcriptional coactivator of nuclear receptors, termed PGC-1, from a brown fat cDNA library. PGC-1 mRNA expression is dramatically elevated upon cold exposure of mice in both brown fat and skeletal muscle, key thermogenic tissues. PGC-1 greatly increases the transcriptional activity of PPARgamma and the thyroid hormone receptor on the uncoupling protein (UCP-1) promoter. Ectopic expression of PGC-1 in white adipose cells activates expression of UCP-1 and key mitochondrial enzymes of the respiratory chain, and increases the cellular content of mitochondrial DNA. These results indicate that PGC-1 plays a key role in linking nuclear receptors to the transcriptional program of adaptive thermogenesis.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                14 March 2012
                09 May 2012
                17 November 2012
                : 485
                : 7398
                : 333-338
                Affiliations
                [1 ]Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School
                [2 ]Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
                [3 ]Division of Maternal Fetal Medicine/Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School
                [4 ]Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School
                [5 ]Division of Nephrology/Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
                [6 ]Dept of Cardiothoracic, Transplantation and Vascular Surgery Medical School Hannover, Germany
                [7 ]Department of Cardiology and Angiology, Medizinische Hochschule Hannover, Germany
                [8 ]Howard Hughes Medical Institute, Boston, MA
                Author notes
                [* ]correspondence should be addressed to Z.A. ( zarany@ 123456bidmc.harvard.edu ) or D.H-K ( hilfiker.denise@ 123456mh-hannover.de )
                [9,10]

                contributed equally to this work

                Article
                HHMIMS363755
                10.1038/nature11040
                3356917
                22596155
                58ac11ad-3b06-4eee-9f54-6d9dc1aecf3e

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: Howard Hughes Medical Institute :
                Award ID: || HHMI_
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article