6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cathelicidin and Calprotectin Are Disparately Altered in Murine Models of Inflammatory Arthritis and Airway Inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cationic host defense peptides (CHDP) are immunomodulatory molecules that control infections and contribute to immune homeostasis. CHDP such as cathelicidin and calprotectin expression is altered in the arthritic synovium, and in the lungs of asthma and COPD patients. Recent studies suggest a link between airway inflammation and the immunopathology of arthritis. Therefore, in this study we compared the abundance of mouse cathelicidin (CRAMP), defensins, and calprotectin subunits (S100A8 and S100A9) in murine models of collagen-induced arthritis (CIA) and allergen house dust mite (HDM)-challenged airway inflammation. CRAMP, S100A8, and S100A9 abundance were significantly elevated in the joint tissues of CIA mice, whereas these were decreased in the lung tissues of HDM-challenged mice, compared to naïve. We further compared the effects of administration of two different synthetic immunomodulatory peptides, IG-19 and IDR-1002, on cathelicidin and calprotectin abundance in the two models. Administration of IG-19, which controls disease progression and inflammation in CIA mice, significantly decreased CRAMP, S100A8, and S100A9 levels to baseline in the joints of the CIA mice, which correlated with the decrease in cellular influx in the joints. However, administration of IDR-1002, which suppresses HDM-induced airway inflammation, did not prevent the decrease in the levels of cathelicidin and calprotectin in the lungs of HDM-challenged mice. Cathelicidin and calprotectin levels did not correlate with leukocyte accumulation in the lungs of the HDM-challenged mice. Results of this study suggest that endogenous cathelicidin and calprotectin abundance are disparately altered, and may be differentially regulated, within local tissues in airway inflammation compared to arthritis.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells.

          Barrier epithelial cells and airway dendritic cells (DCs) make up the first line of defense against inhaled substances such as house dust mite (HDM) allergen and endotoxin (lipopolysaccharide, LPS). We hypothesized that these cells need to communicate with each other to cause allergic disease. We show in irradiated chimeric mice that Toll-like receptor 4 (TLR4) expression on radioresistant lung structural cells, but not on DCs, is necessary and sufficient for DC activation in the lung and for priming of effector T helper responses to HDM. TLR4 triggering on structural cells caused production of the innate proallergic cytokines thymic stromal lymphopoietin, granulocyte-macrophage colony-stimulating factor, interleukin-25 and interleukin-33. The absence of TLR4 on structural cells, but not on hematopoietic cells, abolished HDM-driven allergic airway inflammation. Finally, inhalation of a TLR4 antagonist to target exposed epithelial cells suppressed the salient features of asthma, including bronchial hyperreactivity. Our data identify an innate immune function of airway epithelial cells that drives allergic inflammation via activation of mucosal DCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            S100A8/A9: From basic science to clinical application.

            Neutrophils and monocytes belong to the first line of immune defence cells and are recruited to sites of inflammation during infection or sterile injury. Both cells contain huge amounts of the heterodimeric protein S100A8/A9 in their cytoplasm. S100A8/A9 belongs to the Ca(2+) binding S100 protein family and has recently gained a lot of interest as a critical alarmin modulating the inflammatory response after its release (extracellular S100A8/A9) from neutrophils and monocytes. Extracellular S100A8/A9 interacts with the pattern recognition receptors Toll-like receptor 4 (TLR4) and Receptor for Advanced Glycation Endproducts (RAGE) promoting cell activation and recruitment. Besides its biological function, S100A8/A9 (also known as myeloid related protein 8/14, MRP8/14) was identified as interesting biomarker to monitor disease activity in chronic inflammatory disorders including inflammatory bowel disease and rheumatoid arthritis. Furthermore, S100A8/A9 has been tested successfully in pre-clinical imaging studies to localize sites of infection or sterile injury. Finally, recent evidence using small molecule inhibitors for S100A8/A9 also suggests that blocking S100A8/A9 activity exerts beneficial effects on disease activity in animal models of autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis and inflammatory bowel disease. This review will provide a comprehensive and detailed overview into the structure and biological function of S100A8/A9 and also will give an outlook in terms of diagnostic and therapeutic applications targeting S100A8/A9.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation-associated S100 proteins: new mechanisms that regulate function.

              This review focuses on new aspects of extracellular roles of the calgranulins. S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and induced in several cell types. The S100A8 and S100A9 genes are regulated by pro- and anti-inflammatory mediators and their functions may depend on cell type, mediators within a particular inflammatory milieu, receptors involved in their recognition and their post-translational modification. The S100A8 gene induction in macrophages is dependent on IL-10 and potentiated by immunosuppressive agents. S100A8 and S100A9 are oxidized by peroxide, hypochlorite and nitric oxide (NO). HOCl generates intra-chain sulfinamide bonds; stronger oxidation promotes cross-linked forms that are seen in human atheroma. S100A8 is >200-fold more sensitive to oxidative cross-linking than low-density lipoprotein and may reduce oxidative damage. S100A8 and S100A9 can be S-nitrosylated. S100A8-SNO suppresses mast cell activation and inflammation in the microcirculation and may act as an NO transporter to regulate vessel tone in inflammatory lesions. S100A12 activates mast cells and is a monocyte and mast cell chemoattractant; a G-protein-coupled mechanism may be involved. Structure-function studies are discussed in relation to conservation and divergence of functions in S100A8. S100A12 induces cytokines in mast cells, but not monocytes/macrophages. It forms complexes with Zn(2+) and, by chelating Zn(2+), S100A12 significantly inhibits MMPs. Zn(2+) in S100A12 complexes co-localize with MMP-9 in foam cells in atheroma. In summary, S100A12 has pro-inflammatory properties that are likely to be stable in an oxidative environment, because it lacks Cys and Met residues. Conversely, S100A8 and S100A9 oxidation and S-nitrosylation may have important protective mechanisms in inflammation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                20 August 2020
                2020
                : 11
                : 1932
                Affiliations
                [1] 1Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba , Winnipeg, MB, Canada
                [2] 2Department of Immunology, University of Manitoba , Winnipeg, MB, Canada
                [3] 3Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, MB, Canada
                [4] 4Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba , Winnipeg, MB, Canada
                Author notes

                Edited by: Charles Lee Bevins, University of California, Davis, United States

                Reviewed by: Eduardo Ruben Cobo, University of Calgary, Canada; Gill Diamond, University of Louisville, United States

                *Correspondence: Neeloffer Mookherjee neeloffer.mookherjee@ 123456umanitoba.ca

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.01932
                7468387
                32973796
                5b5ffcc7-4a8c-49dd-a9c1-0ae0c122a983
                Copyright © 2020 Hemshekhar, Piyadasa, Mostafa, Chow, Halayko and Mookherjee.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 April 2020
                : 17 July 2020
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 73, Pages: 13, Words: 9139
                Funding
                Funded by: Canadian Institutes of Health Research 10.13039/501100000024
                Award ID: PJT-155989
                Award ID: SVB-158629
                Categories
                Immunology
                Original Research

                Immunology
                inflammation,cathelicidin,calprotectin,host defence peptides,antimicrobial peptides,arthritis,asthma,airway

                Comments

                Comment on this article