0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fecal microbiota composition affects in vitro fermentation of rye, oat, and wheat bread

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fermentation of dietary fiber by gut microbes produces short-chain fatty acids (SCFA), but fermentation outcomes are affected by dietary fiber source and microbiota composition. The aim of this study was to investigate the effect of two different fecal microbial compositions on in vitro fermentation of a standardized amount of oat, rye, and wheat breads. Two human fecal donors with different microbial community composition were recruited. Bread samples were digested enzymatically. An in vitro fermentation model was used to study SCFA production, dietary fiber degradation, pH, and changes in microbiota. Feces from donor I had high relative abundance of Bacteroides and Escherichia/Shigella, whereas feces from donor II were high in Prevotella and Subdoligranulum. Shifts in microbiota composition were observed during fermentation. SCFA levels were low in the samples with fecal microbiota from donor I after 8 h of fermentation, but after 24 h acetate and propionate levels were similar in the samples from the different donors. Butyrate levels were higher in the fermentation samples from donor II, especially with rye substrate, where high abundance of Subdoligranulum was observed. Dietary fiber degradation was also higher in the fermentation samples from donor II. In conclusion, fermentation capacity and substrate utilization differed between the two different microbiota compositions.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

          A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enterotypes of the human gut microbiome.

            Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formation of propionate and butyrate by the human colonic microbiota

              The human gut microbiota ferments dietary non-digestible carbohydrates into short-chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health-promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross-feeding of intermediary metabolites (in particular lactate, succinate and 1,2-propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.
                Bookmark

                Author and article information

                Contributors
                laura.pirkola@slu.se
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                3 January 2023
                3 January 2023
                2023
                : 13
                : 99
                Affiliations
                [1 ]GRID grid.6341.0, ISNI 0000 0000 8578 2742, Department of Molecular Sciences, , Swedish University of Agricultural Sciences, ; P.O. Box 7015, 75007 Uppsala, Sweden
                [2 ]Fazer Sweden AB, P.O. Box 30180, 11343 Stockholm, Sweden
                [3 ]GRID grid.6341.0, ISNI 0000 0000 8578 2742, Department of Animal Nutrition and Management, , Swedish University of Agricultural Sciences, ; P.O. Box 7024, 75007 Uppsala, Sweden
                [4 ]Oy Karl Fazer AB, P.O. Box 4, 01230 Vantaa, Finland
                [5 ]GRID grid.8993.b, ISNI 0000 0004 1936 9457, Department of Food Studies, Nutrition and Dietetics, , Uppsala University, ; P.O. Box 560, 75122 Uppsala, Sweden
                Article
                26847
                10.1038/s41598-022-26847-y
                9810601
                36596824
                5bb48759-13ee-4827-a45a-e92ff277bf4b
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 June 2022
                : 21 December 2022
                Funding
                Funded by: Fazer Group
                Funded by: LivsID
                Award ID: SLU.ua.2017.1.1.1-2416
                Funded by: Swedish University of Agricultural Sciences
                Categories
                Article
                Custom metadata
                © The Author(s) 2023

                Uncategorized
                microbiome,dietary carbohydrates,polysaccharides
                Uncategorized
                microbiome, dietary carbohydrates, polysaccharides

                Comments

                Comment on this article