72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of labisia pumila benth: from microwave obtained extracts

      research-article
      1 , , 1 , , 2
      BMC Complementary and Alternative Medicine
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Labisia pumila, locally known as Kacip Fatimah, is a forest-floor plant that has tremendous potential in the herbal industry. It is one of the five herbal plants identified by the government as one of the national key economic areas to be developed for commercial purposes. There are three varieties of L. pumila namely, L. pumila var. pumila, L. pumila var. alata and L. pumila var. lanceolata and each has its own use.

          Methods

          The leaves and roots of the three varieties of L. pumila Benth. were extracted using microwave assisted extraction (MAE). Antifungal activity of all plant extracts were characterized against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc. Anti-inflammatory assays were performed using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-g and cytotoxic activity was determined using several cancer cell lines and one normal cell line.

          Results

          The overall result demonstrated that leaf and root extracts of all three varieties of L. pumila exhibited moderate to appreciable antifungal activity against Fusarium sp., Candida sp. and Mucor compared to streptomycin used as positive control. Leaf and root extracts of all varieties significantly decreased NO release. However, the root extracts showed higher activity compared to the leaf extracts. Cytotoxic activity against MCF-7, MDA-MB-231 and Chang cell lines were observed with all extracts.

          Conclusions

          These findings suggest the potential use of L. pumila Benth. as a natural medicine and indicated the possible application of this medicinal plant such anti inflammatory activity and cytotoxic agents.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice).

          Gan-Cao, or licorice, is a popular Chinese herbal medicine derived from the dried roots and rhizomes of Glycyrrhiza uralensis, G. glabra, and G. inflata. The main bioactive constituents of licorice are triterpene saponins and various types of flavonoids. The contents of these compounds may vary in different licorice batches and thus affect the therapeutic effects. In order to ensure its efficacy and safety, sensitive and accurate methods for the qualitative and quantitative analyses of saponins and flavonoids are of significance for the comprehensive quality control of licorice. This review describes the progress in chemical analysis of licorice and its preparations since 2000. Newly established methods are summarized, including spectroscopy, thin-layer chromatography, gas chromatography, high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), capillary electrophoresis, high-speed counter-current chromatography (HSCCC), electrochemistry, and immunoassay. The sensitivity, selectivity and powerful separation capability of HPLC and CE allows the simultaneous detection of multiple compounds in licorice. LC/MS provides characteristic fragmentations for the rapid structural identification of licorice saponins and flavonoids. The combination of HPLC and LC/MS is currently the most powerful technique for the quality control of licorice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New insights on the anticancer properties of dietary polyphenols.

            Cancer, one of the major causes of death across the world, has shown to be a largely preventable disease, highly susceptible to modulation by dietary factors. Phenolic compounds, abundant in vegetables and fruits ubiquitous in diet, were described to play an important role as chemopreventive agents. Since conventional therapeutic and surgical approaches have not been able to control the incidence of most cancer types, the development of chemopreventive strategies is an urgent priority in public health. The current diet phenolic intake is often insufficient to protect from mutagens (either exogenous or endogenous), which leads to the need for dietary supplementation as an alternative approach. Research efforts are placing increasing emphasis on identifying the biological mechanisms and in particular the signal transduction pathways related to the chemopreventive activities of these compounds. These effects are believed to occur by the regulation of signaling pathways such as nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) or mitogen-activated protein kinases (MAPK). Dietary polyphenols can exert their effects on these pathways separately or sequentially and in addition the occurrence of crosstalk between these pathways cannot be overlooked. By modulating cell signaling pathways, polyphenols activate cell death signals and induce apoptosis in precancerous or malignant cells resulting in the inhibition of cancer development or progression. However, regulation of cell signaling pathways by dietary polyphenols can also lead to cell proliferation/survival or inflammatory responses due to increased expression of several genes. The present review summarizes the most recent advances providing new insights into the molecular mechanisms underlying the promising anticarcinogenic activity of dietary polyphenols. 2006 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of action of flavonoids as anti-inflammatory agents: a review.

              Flavonoids are polyphenolic compounds that occur ubiquitously in plants having a variety of biological effects both in vitro and in vivo. They have been found to have antimicrobial, antiviral, anti-ulcerogenic, cytotoxic, anti-neoplastic, mutagenic, antioxidant, antihepatotoxic, antihypertensive, hypolipidemic, antiplatelet and anti-inflammatory activities. Flavonoids also have biochemical effects, which inhibit a number of enzymes such as aldose reductase, xanthine oxidase, phosphodiesterase, Ca(+2)-ATPase, lipoxygenase, cycloxygenase, etc. They also have a regulatory role on different hormones like estrogens, androgens and thyroid hormone. They have been found to have anti-inflammatory activity in both proliferative and exudative phases of inflammation. Several mechanisms of action have been proposed to explain anti-inflammatory action of flavonoids. The aim of the present review is to give an overview of the mechanism of action of potential anti-inflammatory flavonoids.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2013
                24 January 2013
                : 13
                : 20
                Affiliations
                [1 ]Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
                [2 ]Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
                Article
                1472-6882-13-20
                10.1186/1472-6882-13-20
                3608971
                23347830
                5cdd052e-0985-4069-bcc5-1f585e89e763
                Copyright ©2013 Karimi et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 October 2012
                : 22 January 2013
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article