3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How CPEB RNA-binding proteins regulate cytoplasmic polyadenylation and translation is poorly understood. Allain and colleagues report the structures of the tandem RNA recognition motifs (RRMs) of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. Structural and functional studies reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and zinc-binding domains at the 3′ UTR, which favors the nucleation of ribonucleoprotein complexes for translation regulation. This study provides the molecular basis for the translational regulatory circuit established by CPEB proteins.

          Abstract

          Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3′ untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein–protein and protein–RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3′ UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The Amber biomolecular simulation programs.

          We describe the development, current features, and some directions for future development of the Amber package of computer programs. This package evolved from a program that was constructed in the late 1970s to do Assisted Model Building with Energy Refinement, and now contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates. (c) 2005 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MOLMOL: a program for display and analysis of macromolecular structures.

            MOLMOL is a molecular graphics program for display, analysis, and manipulation of three-dimensional structures of biological macromolecules, with special emphasis on nuclear magnetic resonance (NMR) solution structures of proteins and nucleic acids. MOLMOL has a graphical user interface with menus, dialog boxes, and on-line help. The display possibilities include conventional presentation, as well as novel schematic drawings, with the option of combining different presentations in one view of a molecule. Covalent molecular structures can be modified by addition or removal of individual atoms and bonds, and three-dimensional structures can be manipulated by interactive rotation about individual bonds. Special efforts were made to allow for appropriate display and analysis of the sets of typically 20-40 conformers that are conventionally used to represent the result of an NMR structure determination, using functions for superimposing sets of conformers, calculation of root mean square distance (RMSD) values, identification of hydrogen bonds, checking and displaying violations of NMR constraints, and identification and listing of short distances between pairs of hydrogen atoms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.

              Combined automated NOE assignment and structure determination module (CANDID) is a new software for efficient NMR structure determination of proteins by automated assignment of the NOESY spectra. CANDID uses an iterative approach with multiple cycles of NOE cross-peak assignment and protein structure calculation using the fast DYANA torsion angle dynamics algorithm, so that the result from each CANDID cycle consists of exhaustive, possibly ambiguous NOE cross-peak assignments in all available spectra and a three-dimensional protein structure represented by a bundle of conformers. The input for the first CANDID cycle consists of the amino acid sequence, the chemical shift list from the sequence-specific resonance assignment, and listings of the cross-peak positions and volumes in one or several two, three or four-dimensional NOESY spectra. The input for the second and subsequent CANDID cycles contains the three-dimensional protein structure from the previous cycle, in addition to the complete input used for the first cycle. CANDID includes two new elements that make it robust with respect to the presence of artifacts in the input data, i.e. network-anchoring and constraint-combination, which have a key role in de novo protein structure determinations for the successful generation of the correct polypeptide fold by the first CANDID cycle. Network-anchoring makes use of the fact that any network of correct NOE cross-peak assignments forms a self-consistent set; the initial, chemical shift-based assignments for each individual NOE cross-peak are therefore weighted by the extent to which they can be embedded into the network formed by all other NOE cross-peak assignments. Constraint-combination reduces the deleterious impact of artifact NOE upper distance constraints in the input for a protein structure calculation by combining the assignments for two or several peaks into a single upper limit distance constraint, which lowers the probability that the presence of an artifact peak will influence the outcome of the structure calculation. CANDID test calculations were performed with NMR data sets of four proteins for which high-quality structures had previously been solved by interactive protocols, and they yielded comparable results to these reference structure determinations with regard to both the residual constraint violations, and the precision and accuracy of the atomic coordinates. The CANDID approach has further been validated by de novo NMR structure determinations of four additional proteins. The experience gained in these calculations shows that once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach results in greatly enhanced efficiency of the NOESY spectral analysis. The fact that the correct fold is obtained in cycle 1 of a de novo structure calculation is the single most important advance achieved with CANDID, when compared with previously proposed automated NOESY assignment methods that do not use network-anchoring and constraint-combination.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 July 2014
                : 28
                : 13
                : 1498-1514
                Affiliations
                [1 ]Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8093 Zürich, Switzerland;
                [2 ]Institute for Research in Biomedicine, 08028 Barcelona, Spain;
                [3 ]Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
                Author notes
                Article
                8711660
                10.1101/gad.241133.114
                4083092
                24990967
                5e21e69f-f03e-479f-8a19-c2a354d6fddc
                © 2014 Afroz et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 7 March 2014
                : 28 May 2014
                Page count
                Pages: 17
                Categories
                Research Paper

                translational regulation,protein–rna interactions,cpeb1,cpeb4,cytoplasmic polyadenylation,binuclear zinc-binding domain

                Comments

                Comment on this article