15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Gossypium BAC clone contains key repeat components distinguishing sub-genome of allotetraploidy cottons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dissecting genome organization is indispensable for further functional and applied studies. As genome sequences data shown, cotton genomes contain more than 60 % repetitive sequences, so study on repetitive sequences composition, structure, and distribution is the key step to dissect cotton genome.

          Results

          In this study, a bacterial artificial chromosome (BAC) clone enriched in repetitive sequences, was discovered initiatively by fluorescence in situ hybridization (FISH). FISHing with allotetraploidy cotton as target DNA, dispersed signals on most regions of all A sub-genome chromosomes, and only middle regions of all D sub-genome chromosomes were detected. Further FISHing with other cotton species bearing A or D genome as target DNA, specific signals were viewed. After BAC sequencing and bioinformational analysis, 129 repeat elements, size about 57,172 bp were found, accounting for more than 62 % of the BAC sequence (91,238 bp). Among them, a type of long terminal repeat-retrotransposon (LTR-RT), LTR/Gypsy was the key element causing the specific FISH results. Using the fragments of BAC matching with the identified Gypsy-like LTR as probes, the BAC-57I23-like FISH signals were reappeared. Running BLASTN, the fragments had good match with all chromosomes of G. arboreum (A 2) genome and A sub-genome of G. hirsutum (AD 1), and had relatively inferior match with all chromosomes of D sub-genome of AD 1, but had little match with the chromosomes of G. raimondii (D 5) genome, which was consistent with the FISH results.

          Conclusion

          A repeats-enriched cytogenetic marker to identify A and D sub-genomes of Gossypium was discovered by FISH. Combined sequences analysis with FISH verification, the assembly quality of repetitive sequences in the allotetraploidy cotton draft genome was assessed, and better chromosome belonging was verified. We also found the genomic distribution of the identified Gypsy-LTR-RT was similar to the distribution of heterochromatin. The expansion of this type of Gypsy-LTR-RT in heterochromatic regions may be one of the major reasons for the size gap between A and D genome. The findings showed here will help to understand the composition, structure, and evolution of cotton genome, and contribute to the further perfection of the draft genomes of cotton.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data

          Background The investigation of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of higher plant nuclear DNA. Since genome-wide characterization of repetitive elements is complicated by their high abundance and diversity, novel approaches based on massively-parallel sequencing are being adapted to facilitate the analysis. It has recently been demonstrated that the low-pass genome sequencing provided by a single 454 sequencing reaction is sufficient to capture information about all major repeat families, thus providing the opportunity for efficient repeat investigation in a wide range of species. However, the development of appropriate data mining tools is required in order to fully utilize this sequencing data for repeat characterization. Results We adapted a graph-based approach for similarity-based partitioning of whole genome 454 sequence reads in order to build clusters made of the reads derived from individual repeat families. The information about cluster sizes was utilized for assessing the proportion and composition of repeats in the genomes of two model species, Pisum sativum and Glycine max, differing in genome size and 454 sequencing coverage. Moreover, statistical analysis and visual inspection of the topology of the cluster graphs using a newly developed program tool, SeqGrapheR, were shown to be helpful in distinguishing basic types of repeats and investigating sequence variability within repeat families. Conclusions Repetitive regions of plant genomes can be efficiently characterized by the presented graph-based analysis and the graph representation of repeats can be further used to assess the variability and evolutionary divergence of repeat families, discover and characterize novel elements, and aid in subsequent assembly of their consensus sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium.

            The DNA content of eukaryotic nuclei (C-value) varies approximately 200,000-fold, but there is only a approximately 20-fold variation in the number of protein-coding genes. Hence, most C-value variation is ascribed to the repetitive fraction, although little is known about the evolutionary dynamics of the specific components that lead to genome size variation. To understand the modes and mechanisms that underlie variation in genome composition, we generated sequence data from whole genome shotgun (WGS) libraries for three representative diploid (n = 13) members of Gossypium that vary in genome size from 880 to 2460 Mb (1C) and from a phylogenetic outgroup, Gossypioides kirkii, with an estimated genome size of 588 Mb. Copy number estimates including all dispersed repetitive sequences indicate that 40%-65% of each genome is composed of transposable elements. Inspection of individual sequence types revealed differential, lineage-specific expansion of various families of transposable elements among the different plant lineages. Copia-like retrotransposable element sequences have differentially accumulated in the Gossypium species with the smallest genome, G. raimondii, while gypsy-like sequences have proliferated in the lineages with larger genomes. Phylogenetic analyses demonstrated a pattern of lineage-specific amplification of particular subfamilies of retrotransposons within each species studied. One particular group of gypsy-like retrotransposon sequences, Gorge3 (Gossypium retrotransposable gypsy-like element), appears to have undergone a massive proliferation in two plant lineages, accounting for a major fraction of genome-size change. Like maize, Gossypium has undergone a threefold increase in genome size due to the accumulation of LTR retrotransposons over the 5-10 Myr since its origin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium).

              Polyploidy is a prominent process in plant evolution; yet few data address the question of whether homeologous sequences evolve independently subsequent to polyploidization. We report on ribosomal DNA (rDNA) evolution in five allopolyploid (AD genome) species of cotton (Gossypium) and species representing their diploid progenitors (A genome, D genome). Sequence data from the internal transcribed spacer regions (ITS1 and ITS2) and the 5.8S gene indicate that rDNA arrays are homogeneous, or nearly so, in all diploids and allopolyploids examined. Because these arrays occur at four chromosomal loci in allopolyploid cotton, two in each subgenome, repeats from different arrays must have become homogenized by interlocus concerted evolution. Southern hybridization analysis combined with copy-number estimation demonstrate that this process has gone to completion in the diploids and to completion or near-completion in all allopolyploid species and that it most likely involves the entire rDNA repeat. Phylogenetic analysis demonstrates that interlocus concerted evolution has been bidirectional in allopolyploid species--i.e., rDNA from four polyploid lineages has been homogenized to a D genome repeat type, whereas sequences from Gossypium mustelinum have concerted to an A genome repeat type. Although little is known regarding the functional significance of interlocus concerted evolution of homeologous sequences, this study demonstrates that the process occurs for tandemly repeated sequences in diploid and polyploid plants. That interlocus concerted evolution can occur bidirectionally subsequent to hybidization and polyploidization has significant implications for phylogeny reconstruction, especially when based on rDNA sequences.
                Bookmark

                Author and article information

                Contributors
                liuylay2012@163.com
                aydxprh@163.com
                liufcri@163.com
                wxx1991@126.com
                cxlheb@163.com
                zhonglizhou@163.com
                wcy2525377@126.com
                kxncai0611@163.com
                wangyh2525377@163.com
                linzhongxu@mail.hzau.edu.cn
                wkbcri@163.com
                Journal
                Mol Cytogenet
                Mol Cytogenet
                Molecular Cytogenetics
                BioMed Central (London )
                1755-8166
                22 March 2016
                22 March 2016
                2016
                : 9
                : 27
                Affiliations
                [ ]State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
                [ ]National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
                [ ]Anyang Institute of Technology, Anyang, Henan 455000 China
                Article
                235
                10.1186/s13039-016-0235-y
                4802715
                27006694
                5fcb3f38-acdc-4ecd-92a3-367cb699f37e
                © Liu et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 February 2016
                : 14 March 2016
                Funding
                Funded by: National Natural Science Foundation of China (CN)
                Award ID: 31471548
                Award Recipient :
                Funded by: State Key Laboratory of Cotton Biology Open Fund
                Award ID: CB2014A07
                Award Recipient :
                Funded by: National High Technology Research and Development Program
                Award ID: 2013AA102601
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Genetics
                gossypium,bac,repetitive sequences,ltr-rt,fish
                Genetics
                gossypium, bac, repetitive sequences, ltr-rt, fish

                Comments

                Comment on this article