20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer-associated fibroblasts in radiotherapy: challenges and new opportunities

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Radiotherapy is one of the most important therapeutic strategies for treating cancer. For decades, studies concerning the outcomes of radiotherapy mainly focused on the biological effects of radiation on tumor cells. Recently, we have increasingly recognized that the complex cellular interactions within the tumor microenvironment (TME) are closely related to treatment outcomes.

          Main content

          As a critical component of the TME, fibroblasts participate in all stages of cancer progression. Fibroblasts are able to tolerate harsh extracellular environments, which are usually fatal to all other cells. They play pivotal roles in determining the treatment response to chemoradiotherapy. Radiotherapy activates the TME networks by inducing cycling hypoxia, modulating immune reaction, and promoting vascular regeneration, inflammation and fibrosis. While a number of studies claim that radiotherapy affects fibroblasts negatively through growth arrest and cell senescence, others argue that exposure to radiation can induce an activated phenotype in fibroblasts. These cells take an active part in constructing the tumor microenvironment by secreting cytokines and degradative enzymes. Current strategies that aim to inhibit activated fibroblasts mainly focus on four aspects: elimination, normalization, paracrine signaling blockade and extracellular matrix inhibition. This review will describe the direct cellular effects of radiotherapy on fibroblasts and the underlying genetic changes. We will also discuss the impact of fibroblasts on cancer cells during radiotherapy and the potential value of targeting fibroblasts to enhance the clinical outcome of radiotherapy.

          Conclusion

          This review provides good preliminary data to elucidate the biological roles of CAFs in radiotherapy and the clinical value of targeting CAFs as a supplementary treatment to conventional radiotherapy. Further studies to validate this strategy in more physiological models may be required before clinical trial.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy.

          The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK: Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma.

            Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. We used tissue microarray analysis to compare immune cell infiltration of different pancreaticobiliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis) and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We also analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice and the effects of all-trans retinoic acid (ATRA) on these processes. Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase(+) and CD68(+) cells compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8(+), FoxP3(+), CD56(+), or CD20(+) cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8(+) T cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8(+) T cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8(+) T cells, from patients with PDAC, had increased chemotaxis toward activated PSCs, which secrete CXCL12, compared with quiescent PSCs or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of PSCs with ATRA. Based on studies of human PDAC samples and KPC mice, activated PSCs appear to reduce migration of CD8(+) T cells to juxtatumoral stromal compartments, preventing their access to cancer cells. Deregulated signaling by activated PSCs could prevent an effective antitumor immune response. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radiation oncology in the era of precision medicine.

              Technological advances and clinical research over the past few decades have given radiation oncologists the capability to personalize treatments for accurate delivery of radiation dose based on clinical parameters and anatomical information. Eradication of gross and microscopic tumours with preservation of health-related quality of life can be achieved in many patients. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced image guidance and particle therapy, and novel biological concepts for personalized treatment, including biomarker-guided prescription, combined treatment modalities and adaptation of treatment during its course.
                Bookmark

                Author and article information

                Contributors
                wangzhanhuai@zju.edu.cn
                tyx90@zju.edu.cn
                tan0yi0nuo@zju.edu.cn
                qichun_wei@zju.edu.cn
                +86 571 87784820 , Wei-yu@zju.edu.cn
                Journal
                Cell Commun Signal
                Cell Commun. Signal
                Cell Communication and Signaling : CCS
                BioMed Central (London )
                1478-811X
                17 May 2019
                17 May 2019
                2019
                : 17
                : 47
                Affiliations
                [1 ]ISNI 0000 0004 1759 700X, GRID grid.13402.34, Department of Surgical Oncology, Second Affiliated Hospital, , Zhejiang University School of Medicine, ; Hangzhou, Zhejiang 310009 China
                [2 ]GRID grid.412465.0, Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), , The Second Affiliated Hospital, Zhejiang University School of Medicine, ; Hangzhou, Zhejiang 310009 China
                [3 ]ISNI 0000 0004 1759 700X, GRID grid.13402.34, Department of Radiation Oncology, Second Affiliated Hospital, , Zhejiang University School of Medicine, ; Hangzhou, 310009 Zhejiang China
                Article
                362
                10.1186/s12964-019-0362-2
                6525365
                31101063
                609439ac-a55f-4ab8-9ebf-a1601ba26527
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 February 2019
                : 6 May 2019
                Funding
                Funded by: grants from Educational Department of Zhejiang Province of China
                Award ID: Y201738820
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100012226, Fundamental Research Funds for the Central Universities;
                Funded by: Natural Science Foundation of Zhejiang Province (CN)
                Award ID: Q19H160211
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Cell biology
                tumor microenvironment,cancer-associated fibroblasts,radiotherapy
                Cell biology
                tumor microenvironment, cancer-associated fibroblasts, radiotherapy

                Comments

                Comment on this article