101
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity in gut bacterial community of school-age children in Asia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asia differs substantially among and within its regions populated by diverse ethnic groups, which maintain their own respective cultures and dietary habits. To address the diversity in their gut microbiota, we characterized the bacterial community in fecal samples obtained from 303 school-age children living in urban or rural regions in five countries spanning temperate and tropical areas of Asia. The microbiota profiled for the 303 subjects were classified into two enterotype-like clusters, each driven by Prevotella (P-type) or Bifidobacterium/ Bacteroides (BB-type), respectively. Majority in China, Japan and Taiwan harbored BB-type, whereas those from Indonesia and Khon Kaen in Thailand mainly harbored P-type. The P-type microbiota was characterized by a more conserved bacterial community sharing a greater number of type-specific phylotypes. Predictive metagenomics suggests higher and lower activity of carbohydrate digestion and bile acid biosynthesis, respectively, in P-type subjects, reflecting their high intake of diets rich in resistant starch. Random-forest analysis classified their fecal species community as mirroring location of resident country, suggesting eco-geographical factors shaping gut microbiota. In particular, children living in Japan harbored a less diversified microbiota with high abundance of Bifidobacterium and less number of potentially pathogenic bacteria, which may reflect their living environment and unique diet.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models.

          Increased efficiency of energy harvest, due to alterations in the gut microbiota (increased Firmicutes and decreased Bacteroidetes), has been implicated in obesity in mice and humans. However, a causal relationship is unproven and contributory variables include diet, genetics and age. Therefore, we explored the effect of a high-fat (HF) diet and genetically determined obesity (ob/ob) for changes in microbiota and energy harvesting capacity over time. Seven-week-old male ob/ob mice were fed a low-fat diet and wild-type mice were fed either a low-fat diet or a HF-diet for 8 weeks (n=8/group). They were assessed at 7, 11 and 15 weeks of age for: fat and lean body mass (by NMR); faecal and caecal short-chain fatty acids (SCFA, by gas chromatography); faecal energy content (by bomb calorimetry) and microbial composition (by metagenomic pyrosequencing). A progressive increase in Firmicutes was confirmed in both HF-fed and ob/ob mice reaching statistical significance in the former, but this phylum was unchanged over time in the lean controls. Reductions in Bacteroidetes were also found in ob/ob mice. However, changes in the microbiota were dissociated from markers of energy harvest. Thus, although the faecal energy in the ob/ob mice was significantly decreased at 7 weeks, and caecal SCFA increased, these did not persist and faecal acetate diminished over time in both ob/ob and HF-fed mice, but not in lean controls. Furthermore, the proportion of the major phyla did not correlate with energy harvest markers. The relationship between the microbial composition and energy harvesting capacity is more complex than previously considered. While compositional changes in the faecal microbiota were confirmed, this was primarily a feature of high-fat feeding rather than genetically induced obesity. In addition, changes in the proportions of the major phyla were unrelated to markers of energy harvest which changed over time. The possibility of microbial adaptation to diet and time should be considered in future studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis

            The Ribosomal Database Project (RDP-II) provides the research community with aligned and annotated rRNA gene sequences, along with analysis services and a phylogenetically consistent taxonomic framework for these data. Updated monthly, these services are made available through the RDP-II website (http://rdp.cme.msu.edu/). RDP-II release 9.21 (August 2004) contains 101 632 bacterial small subunit rRNA gene sequences in aligned and annotated format. High-throughput tools for initial taxonomic placement, identification of related sequences, probe and primer testing, data navigation and subalignment download are provided. The RDP-II email address for questions or comments is rdpstaff@msu.edu.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans.

              Epidemiologic studies have suggested that most cases of sporadic colon cancer can be attributed to diet. The recognition that colonic microbiota have a major influence on colonic health suggests that they might mediate colonic carcinogenesis. To examine the hypothesis that the influence of diet on colon cancer risk is mediated by the microbiota through their metabolites, we measured differences in colonic microbes and their metabolites in African Americans with a high risk and in rural native Africans with a low risk of colon cancer. Fresh fecal samples were collected from 12 healthy African Americans aged 50-65 y and from 12 age- and sex-matched native Africans. Microbiomes were analyzed with 16S ribosomal RNA gene pyrosequencing together with quantitative polymerase chain reaction of the major fermentative, butyrate-producing, and bile acid-deconjugating bacteria. Fecal short-chain fatty acids were measured by gas chromatography and bile acids by liquid chromatography-mass spectrometry. Microbial composition was fundamentally different, with a predominance of Prevotella in native Africans (enterotype 2) and of Bacteroides in African Americans (enterotype 1). Total bacteria and major butyrate-producing groups were significantly more abundant in fecal samples from native Africans. Microbial genes encoding for secondary bile acid production were more abundant in African Americans, whereas those encoding for methanogenesis and hydrogen sulfide production were higher in native Africans. Fecal secondary bile acid concentrations were higher in African Americans, whereas short-chain fatty acids were higher in native Africans. Our results support the hypothesis that colon cancer risk is influenced by the balance between microbial production of health-promoting metabolites such as butyrate and potentially carcinogenic metabolites such as secondary bile acids.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 February 2015
                2015
                : 5
                : 8397
                Affiliations
                [1 ]Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
                [2 ]Yakult Central Institute, 5-11 Izumi , Kunitachi, Tokyo 186-8650, Japan
                [3 ]Yakult Honsha European Research Center for Microbiology, ESV , Technologiepark 4, 9052 Ghent-Zwijnaarde, Belgium
                [4 ]Institute of Biochemistry and Molecular Biology, National Yang-Ming University , 155, Sec 2, Li Nong Street, Peitou, Taipei 11221, Taiwan
                [5 ]Faculty of Agricultural Technology and Center for Food & Nutrition Studies, Universitas Gadjah Mada , Bulaksumur, Yogyakarta 55281, Indonesia
                [6 ]Department of Biotechnology, Kasetsart University , 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
                [7 ]School of Public Health, Faculty of Medicine, Udayana University , Jalan PB.Sudirman, Denpasar 80230, Bali, Indonesia
                [8 ]College of Food Science & Nutritional Engineering, China Agricultural University , 17 Qinghua Donglu, Hai Dian District Beijing 100083, P.R. China
                [9 ]Department of Microbiology, National University of Singapore , 5 Science Drive 2, Singapore 117597, Singapore
                [10 ]Department of Animal Science and Technology, National Taiwan University , 50 Lane 155, Sec 3, Keelung Road, Taipei 10673, Taiwan
                [11 ]Food Industry Research & Development Institute , PO Box 246, Hsinchu 30062, Taiwan
                [12 ]Department of Preventive Medicine, Division of Social Medicine, School of Medical Sciences, Kyushu University , Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
                [13 ]Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University , 123 Mitrapap Road, Amphur Muang, Khon Kaen, 40002, Thailand
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep08397
                10.1038/srep08397
                4336934
                25703686
                62b8ab8b-5d5e-4839-94d0-362f4620f048
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 04 September 2014
                : 12 January 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article