5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Germline and mosaic mutations causing pituitary tumours: genetic and molecular aspects

      1 , 2 , 1 , 1
      Journal of Endocrinology
      Bioscientifica

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While 95% of pituitary adenomas arise sporadically without a known inheritable predisposing mutation, in about 5% of the cases they can arise in a familial setting, either isolated (familial isolated pituitary adenoma or FIPA) or as part of a syndrome. FIPA is caused, in 15–30% of all kindreds, by inactivating mutations in the AIP gene, encoding a co-chaperone with a vast array of interacting partners and causing most commonly growth hormone excess. While the mechanisms linking AIP with pituitary tumorigenesis have not been fully understood, they are likely to involve several pathways, including the cAMP-dependent protein kinase A pathway via defective G inhibitory protein signalling or altered interaction with phosphodiesterases. The cAMP pathway is also affected by other conditions predisposing to pituitary tumours, including X-linked acrogigantism caused by duplications of the GPR101 gene, encoding an orphan G stimulatory protein-coupled receptor. Activating mosaic mutations in the GNAS gene, coding for the Gα stimulatory protein, cause McCune–Albright syndrome, while inactivating mutations in the regulatory type 1α subunit of protein kinase A represent the most frequent genetic cause of Carney complex, a syndromic condition with multi-organ manifestations also involving the pituitary gland. In this review, we discuss the genetic and molecular aspects of isolated and syndromic familial pituitary adenomas due to germline or mosaic mutations, including those secondary to AIP and GPR101 mutations, multiple endocrine neoplasia type 1 and 4, Carney complex, McCune–Albright syndrome, DICER1 syndrome and mutations in the SDHx genes underlying the association of familial paragangliomas and phaeochromocytomas with pituitary adenomas.

          Related collections

          Most cited references244

          • Record: found
          • Abstract: found
          • Article: not found

          The widespread regulation of microRNA biogenesis, function and decay.

          MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The prevalence of pituitary adenomas: a systematic review.

            Pituitary adenomas display an array of hormonal and proliferative activity. Once primarily classified according to size (microadenomas, or = 1 cm), these tumors are now further classified according to immunohistochemistry and functional status. With these additional classifications in mind, the goals of the current study were to determine the prevalence of pituitary adenomas and to explore the clinical relevance of the findings. The authors conducted a metaanalysis of all existing English-language articles in MEDLINE. They used the search string (pituitary adenoma or pituitary tumor) and prevalence and selected relevant autopsy and imaging evaluation studies for inclusion. The authors found an overall estimated prevalence of pituitary adenomas of 16.7% (14.4% in autopsy studies and 22.5% in radiologic studies). Given the high frequency of pituitary adenomas and their potential for causing clinical pathologies, the findings of the current study suggest that early diagnosis and treatment of pituitary adenomas should have far-reaching benefits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK).

              Pituitary adenomas (PAs) are associated with increased morbidity and mortality. The optimal delivery of services and the provision of care for patients with PAs require distribution of the resources proportionate to the impact of these conditions on the community. Currently, the resource allocation for PAs in the health care system is lacking a reliable and an up-to-date epidemiological background that would reflect the recent advances in the diagnostic technologies, leading to the earlier recognition of these tumours. To determine the prevalence, the diagnostic delay and the characteristics of patients with PA in a well-defined geographical area of the UK (Banbury, Oxfordshire). Sixteen general practitioner (GP) surgeries covering the area of Banbury and a total population of 89 334 inhabitants were asked to participate in the study (data confirmed on 31 July 2006). Fourteen surgeries with a total of 81,449 inhabitants (91% of the study population) agreed to take part. All cases of PAs were found following an exhaustive computer database search of agreed terms by the staff of each Practice and data on age, gender, presenting manifestations and their duration, imaging features at diagnosis, history of multiple endocrine neoplasia type 1 and family history of PA were collected. A total of 63 patients with PA were identified amongst the study population of 81,149, with a prevalence of 77.6 PA cases/100,000 inhabitants (prolactinomas; PRLoma: 44.4, nonfunctioning PAs: 22.2, acromegaly; ACRO: 8.6, corticotroph adenoma: 1.2 and unknown functional status; UFS: 1.2/100,000 inhabitants). The distribution of each PA subtype was for PRLoma 57%, nonfunctioning PAs 28%, ACRO 11%, corticotroph adenoma 2% and UFS 2%. The median age at diagnosis and the duration of symptoms until diagnosis (in years) were for PRLoma 32.0 and 1.5, nonfunctioning PAs 51.5 and 0.8, ACRO 47 and 4.5 and corticotroph adenoma 57 and 7, respectively. PRLoma was the most frequent PA diagnosed up to the age of 60 years (0-20 years: 75% and 20-60 years: 61% of PAs) and nonfunctioning PA after the age of 60 years (60% of PAs). Nonfunctioning PAs dominated in men (57% of all men with PA) and PRLoma in women (76% of all women with PA). Five patients (7.9%) presented with classical pituitary apoplexy, with a prevalence of 6.2 cases/100,000 inhabitants. Based on a well-defined population in Banbury (Oxfordshire, UK), we have shown that PAs have a fourfold increased prevalence than previously thought; our data confirm that PAs have a higher burden on the Health Care System and optimal resource distribution for both clinical care and research activities aiming to improve the outcome of these patients are needed.
                Bookmark

                Author and article information

                Journal
                Journal of Endocrinology
                Bioscientifica
                0022-0795
                1479-6805
                February 2019
                February 2019
                February 2019
                February 2019
                : 240
                : 2
                : R21-R45
                Affiliations
                [1 ]1Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
                [2 ]2Department of Medical Biotechnologies, University of Siena, Siena, Italy
                Article
                10.1530/JOE-18-0446
                30530903
                63cbb533-3574-4d32-8b32-a06fef34ac36
                © 2019

                Free to read

                History

                Comments

                Comment on this article