51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection.

      Nature immunology
      Animals, Cell Differentiation, Cell Polarity, Chitin, immunology, Gene Expression Regulation, Enzymologic, Histone Demethylases, metabolism, Host-Parasite Interactions, Interferon Regulatory Factors, genetics, Jumonji Domain-Containing Histone Demethylases, Macrophage Activation, Macrophages, cytology, Macrophages, Alveolar, Methylation, Mice, Mice, Knockout, Nippostrongylus, Strongylida Infections

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polarization of macrophages to M1 or M2 cells is important for mounting responses against bacterial and helminth infections, respectively. Jumonji domain containing-3 (Jmjd3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in the activation of macrophages. Here we show that Jmjd3 is essential for M2 macrophage polarization in response to helminth infection and chitin, though Jmjd3 is dispensable for M1 responses. Furthermore, Jmjd3 (also known as Kdm6b) is essential for proper bone marrow macrophage differentiation, and this function depends on demethylase activity of Jmjd3. Jmjd3 deficiency affected trimethylation of H3K27 in only a limited number of genes. Among them, we identified Irf4 as encoding a key transcription factor that controls M2 macrophage polarization. Collectively, these results show that Jmjd3-mediated H3K27 demethylation is crucial for regulating M2 macrophage development leading to anti-helminth host responses.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Origin and physiological roles of inflammation.

          Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome regulation by polycomb and trithorax proteins.

            Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous developmental genes. To silence or activate gene expression, respectively, PcG and trxG proteins bind to specific regions of DNA and direct the posttranslational modification of histones. Recent work suggests that PcG proteins regulate the nuclear organization of their target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The structure and synthesis of the fungal cell wall.

              The fungal cell wall is a dynamic structure that protects the cell from changes in osmotic pressure and other environmental stresses, while allowing the fungal cell to interact with its environment. The structure and biosynthesis of a fungal cell wall is unique to the fungi, and is therefore an excellent target for the development of anti-fungal drugs. The structure of the fungal cell wall and the drugs that target its biosynthesis are reviewed. Based on studies in a number of fungi, the cell wall has been shown to be primarily composed of chitin, glucans, mannans and glycoproteins. The biosynthesis of the various components of the fungal cell wall and the importance of the components in the formation of a functional cell wall, as revealed through mutational analyses, are discussed. There is strong evidence that the chitin, glucans and glycoproteins are covalently cross-linked together and that the cross-linking is a dynamic process that occurs extracellularly. (c) 2006 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Comments

                Comment on this article