4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of fiber cell communication may contribute to the development of cataracts of many different etiologies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The lens is an avascular organ that is supported by an internal circulation of water and solutes. This circulation is driven by ion pumps, channels and transporters in epithelial cells and by ion channels in fiber cells and is maintained by fiber-fiber and fiber-epithelial cell communication. Gap junctional intercellular channels formed of connexin46 and connexin50 are critical components of this circulation as demonstrated by studies of connexin null mice and connexin mutant mice. Moreover, connexin mutants are one of the most common causes of autosomal dominant congenital cataracts. However, alterations of the lens circulation and coupling between lens fiber cells are much more prevalent, beyond the connexin mutant lenses. Intercellular coupling and levels of connexins are decreased with aging. Gap junction-mediated intercellular communication decreases in mice expressing mutant forms of several different lens proteins and in some mouse models of lens protein damage. These observations suggest that disruption of ionic homeostasis due to reduction of the lens circulation is a common component of the development of many different types of cataracts. The decrease in the lens circulation often reflects low levels of lens fiber cell connexins and/or functional gap junction channels.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes

          Gap junctions are composed of a family of structural proteins called connexins, which oligomerize into intercellular channels and function to exchange low molecular weight metabolites and ions between adjacent cells. We have cloned a new member of the connexin family from lens cDNA, with a predicted molecular mass of 46 kD, called rat connexin46 (Cx46). Since a full-length cDNA corresponding to the 2.8-kb mRNA was not obtained, the stop codon and surrounding sequences were confirmed from rat genomic DNA. The RNA coding for this protein is abundant in lens fibers and detectable in both myocardium and kidney. Western analysis of both rat and bovine lens membrane proteins, using the anti- MP70 monoclonal antibody 6-4-B2-C6 and three anti-peptide antibodies against Cx46 demonstrates that Cx46 and MP70 are different proteins. Immunocytochemistry demonstrates that both proteins are localized in the same lens fiber junctional maculae. Synthesis of Cx46 in either reticulocyte lysate or Xenopus oocytes yields a 46-kD polypeptide; all anti-Cx46 antisera recognize a protein in rat lens membranes 5-10 kD larger, suggesting substantive lenticular posttranslational processing of the native translation product. Oocytes that have synthesized Cx46 depolarize and lyse within 24 h, a phenomenon never observed after expression of rat connexins 32 or 43 (Cx32 and Cx43). Lysis is prevented by osmotically buffering the oocytes with 5% Ficoll. Ficoll- buffered oocytes expressing Cx46 are permeable to Lucifer Yellow but not FITC-labeled BSA, indicating the presence of selective membrane permeabilities. Cx43-expressing oocytes are impermeable to Lucifer Yellow. Voltage-gated whole cell currents are measured in oocytes injected with dilute concentrations of Cx46 but not Cx43 mRNA. These currents are activated at potentials positive to -10 mV. Unlike other connexins expressed in Xenopus oocytes, these results suggest that unprocessed Cx46 induces nonselective channels in the oolemma that are voltage dependent and opened by large depolarizations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The lens circulation.

            The lens is the largest organ in the body that lacks a vasculature. The reason is simple: blood vessels scatter and absorb light while the physiological role of the lens is to be transparent so it can assist the cornea in focusing light on the retina. We hypothesize this lack of blood supply has led the lens to evolve an internal circulation of ions that is coupled to fluid movement, thus creating an internal micro-circulatory system, which makes up for the lack of vasculature. This review covers the membrane transport systems that are believed to generate and direct this internal circulatory system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma membrane channels formed by connexins: their regulation and functions.

              Members of the connexin gene family are integral membrane proteins that form hexamers called connexons. Most cells express two or more connexins. Open connexons found at the nonjunctional plasma membrane connect the cell interior with the extracellular milieu. They have been implicated in physiological functions including paracrine intercellular signaling and in induction of cell death under pathological conditions. Gap junction channels are formed by docking of two connexons and are found at cell-cell appositions. Gap junction channels are responsible for direct intercellular transfer of ions and small molecules including propagation of inositol trisphosphate-dependent calcium waves. They are involved in coordinating the electrical and metabolic responses of heterogeneous cells. New approaches have expanded our knowledge of channel structure and connexin biochemistry (e.g., protein trafficking/assembly, phosphorylation, and interactions with other connexins or other proteins). The physiological role of gap junctions in several tissues has been elucidated by the discovery of mutant connexins associated with genetic diseases and by the generation of mice with targeted ablation of specific connexin genes. The observed phenotypes range from specific tissue dysfunction to embryonic lethality.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                12 September 2022
                2022
                : 13
                : 989524
                Affiliations
                [1] 1 Department of Pediatrics , University of Chicago , Chicago, IL, United States
                [2] 2 Department of Physiology and Biophysics , Stony Brook University , Stony Brook, NY, United States
                Author notes

                Edited by: Anaclet Ngezahayo, Leibniz University Hannover, Germany

                Reviewed by: Kevin Schey, Vanderbilt University, United States

                Gus Grey, The University of Auckland, New Zealand

                *Correspondence: Eric C. Beyer, ecbeyer@ 123456uchicago.edu

                This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology

                Article
                989524
                10.3389/fphys.2022.989524
                9511111
                64e05ece-8c4a-413e-bbb9-93aae7db01e5
                Copyright © 2022 Beyer, Mathias and Berthoud.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 July 2022
                : 22 August 2022
                Funding
                Funded by: National Institutes of Health , doi 10.13039/100000002;
                Categories
                Physiology
                Review

                Anatomy & Physiology
                connexin,gap junction,lens,cataract,cell-to-cell communication
                Anatomy & Physiology
                connexin, gap junction, lens, cataract, cell-to-cell communication

                Comments

                Comment on this article