23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Orphan nuclear receptor TR3/Nur77 regulates VEGF-A–induced angiogenesis through its transcriptional activity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular endothelial growth factor (VEGF)-A has essential roles in vasculogenesis and angiogenesis, but the downstream steps and mechanisms by which human VEGF-A acts are incompletely understood. We report here that human VEGF-A exerts much of its angiogenic activity by up-regulating the expression of TR3 (mouse homologue Nur77), an immediate-early response gene and orphan nuclear receptor transcription factor previously implicated in tumor cell, lymphocyte, and neuronal growth and apoptosis. Overexpression of TR3 in human umbilical vein endothelial cells (HUVECs) resulted in VEGF-A–independent proliferation, survival, and induction of several cell cycle genes, whereas expression of antisense TR3 abrogated the response to VEGF-A in these assays and also inhibited tube formation. Nur77 was highly expressed in several types of VEGF-A–dependent pathological angiogenesis in vivo. Also, using a novel endothelial cell-selective retroviral targeting system, overexpression of Nur77 DNA potently induced angiogenesis in the absence of exogenous VEGF-A, whereas Nur77 antisense strongly inhibited VEGF-A–induced angiogenesis. B16F1 melanoma growth and angiogenesis were greatly inhibited in Nur77 −/− mice. Mechanistic studies with TR3/Nur77 mutants revealed that TR3/Nur77 exerted most of its effects on cultured HUVECs and its pro-angiogenic effects in vivo, through its transactivation and DNA binding domains (i.e., through transcriptional activity).

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in cancer, vascular, rheumatoid and other disease.

          J Folkman (1995)
          Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear hormone receptors and gene expression.

            The nuclear hormone receptor superfamily includes receptors for thyroid and steroid hormones, retinoids and vitamin D, as well as different "orphan" receptors of unknown ligand. Ligands for some of these receptors have been recently identified, showing that products of lipid metabolism such as fatty acids, prostaglandins, or cholesterol derivatives can regulate gene expression by binding to nuclear receptors. Nuclear receptors act as ligand-inducible transcription factors by directly interacting as monomers, homodimers, or heterodimers with the retinoid X receptor with DNA response elements of target genes, as well as by "cross-talking" to other signaling pathways. The effects of nuclear receptors on transcription are mediated through recruitment of coregulators. A subset of receptors binds corepressor factors and actively represses target gene expression in the absence of ligand. Corepressors are found within multicomponent complexes that contain histone deacetylase activity. Deacetylation leads to chromatin compactation and transcriptional repression. Upon ligand binding, the receptors undergo a conformational change that allows the recruitment of multiple coactivator complexes. Some of these proteins are chromatin remodeling factors or possess histone acetylase activity, whereas others may interact directly with the basic transcriptional machinery. Recruitment of coactivator complexes to the target promoter causes chromatin decompactation and transcriptional activation. The characterization of corepressor and coactivator complexes, in concert with the identification of the specific interaction motifs in the receptors, has demonstrated the existence of a general molecular mechanism by which different receptors elicit their transcriptional responses in target genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing

              Persistent microvascular hyperpermeability to plasma proteins even after the cessation of injury is a characteristic but poorly understood feature of normal wound healing. It results in extravasation of fibrinogen that clots to form fibrin, which serves as a provisional matrix and promotes angiogenesis and scar formation. We present evidence indicating that vascular permeability factor (VPF; also known as vascular endothelial growth factor) may be responsible for the hyperpermeable state, as well as the angiogenesis, that are characteristic of healing wounds. Hyperpermeable blood vessels were identified in healing split-thickness guinea pig and rat punch biopsy skin wounds by their capacity to extravasate circulating macromolecular tracers (colloidal carbon, fluoresceinated dextran). Vascular permeability was maximal at 2-3 d, but persisted as late as 7 d after wounding. Leaky vessels were found initially at the wound edges and later in the subepidermal granulation tissue as keratinocytes migrated to cover the denuded wound surface. Angiogenesis was also prominent within this 7-d interval. In situ hybridization revealed that greatly increased amounts of VPF mRNA were expressed by keratinocytes, initially those at the wound edge, and, at later intervals, keratinocytes that migrated to cover the wound surface; occasional mononuclear cells also expressed VPF mRNA. Secreted VPF was detected by immunofluoroassay of medium from cultured human keratinocytes. These data identify keratinocytes as an important source of VPF gene transcript and protein, correlate VPF expression with persistent vascular hyperpermeability and angiogenesis, and suggest that VPF is an important cytokine in wound healing.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                20 March 2006
                : 203
                : 3
                : 719-729
                Affiliations
                [1 ]Department of Pathology and [2 ]Department of Medicine, Gastroenterology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
                Author notes

                CORRESPONDENCE H. Zeng: hzeng@ 123456bidmc.harvard.edu

                Article
                20051523
                10.1084/jem.20051523
                2118245
                16520388
                658403b1-8912-49c4-b7ea-9f790cefe59d
                Copyright © 2006, The Rockefeller University Press
                History
                : 28 July 2005
                : 9 February 2006
                Categories
                Articles
                Article

                Medicine
                Medicine

                Comments

                Comment on this article