22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increasing Signal Specificity of the TOL Network of Pseudomonas putida mt-2 by Rewiring the Connectivity of the Master Regulator XylR

      research-article
        , , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prokaryotic transcription factors (TFs) that bind small xenobiotic molecules (e.g., TFs that drive genes that respond to environmental pollutants) often display a promiscuous effector profile for analogs of the bona fide chemical signals. XylR, the master TF for expression of the m-xylene biodegradation operons encoded in the TOL plasmid pWW0 of Pseudomonas putida, responds not only to the aromatic compound but also, albeit to a lesser extent, to many other aromatic compounds, such as 3-methylbenzylalcohol (3MBA). We have examined whether such a relaxed regulatory scenario can be reshaped into a high-capacity/high-specificity regime by changing the connectivity of this effector-sensing TF within the rest of the circuit rather than modifying XylR structure itself. To this end, the natural negative feedback loop that operates on xylR transcription was modified with a translational attenuator that brings down the response to 3MBA while maintaining the transcriptional output induced by m-xylene (as measured with a luxCDABE reporter system). XylR expression was then subject to a positive feedback loop in which the TF was transcribed from its own target promoters, each known to hold different input/output transfer functions. In the first case ( xylR under the strong promoter of the upper TOL operon, Pu), the reporter system displayed an increased transcriptional capacity in the resulting network for both the optimal and the suboptimal XylR effectors. In contrast, when xylR was expressed under the weaker Ps promoter, the resulting circuit unmistakably discriminated m-xylene from 3MBA. The non-natural connectivity engineered in the network resulted both in a higher promoter activity and also in a much-increased signal-to-background ratio. These results indicate that the working regimes of given genetic circuits can be dramatically altered through simple changes in the way upstream transcription factors are self-regulated by positive or negative feedback loops.

          Author Summary

          It is generally taken for granted that promoters regulated by transcriptional factors (TFs) that respond to small molecules control their specificity to given effectors by tightening or relaxing the intrinsic dual interaction between the TF and the particular inducer. One such promoter is Pu, which drives expression of an operon for the biodegradation of m-xylene by the soil bacterium P. putida mt-2. While XylR, the chief TF of this system, binds this substrate and activates Pu, the same regulator responds, to a lesser extent, to 3-methylbenzylalcohol and thus also activates the promoter. This work provides evidence that such natural effector promiscuity of the system can be altogether suppressed by replacing the naturally occurring negative autoregulation loop that governs XylR expression with an equivalent positive feedback loop. Based on this result, we argue that signal specificity of a given regulatory device depends not only on the TF involved but also on TF connectivity to upstream signals and downstream targets.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.

          Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bistability in bacteria.

            Gene expression in bacteria is traditionally studied from the average behaviour of cells in a population, which has led to the assumption that under a particular set of conditions all cells express genes in an approximately uniform manner. The advent of methods for visualizing gene expression in individual cells reveals, however, that populations of genetically identical bacteria are sometimes heterogeneous, with certain genes being expressed in a non-uniform manner across the population. In some cases, heterogeneity is manifested by the bifurcation into distinct subpopulations, and we adopt the common usage, referring to this phenomenon as bistability. Here we consider four cases of bistability, three from Bacillus subtilis and one from Escherichia coli, with an emphasis on random switching mechanisms that generate alternative cell states and the biological significance of phenotypic heterogeneity. A review describing additional examples of bistability in bacteria has been published recently.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria.

              Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variants with half-lives ranging from 40 min to a few hours when synthesized in Escherichia coli and Pseudomonas putida. The new Gfp variants should be useful for in situ studies of temporal gene expression.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2012
                October 2012
                11 October 2012
                : 8
                : 10
                : e1002963
                Affiliations
                [1]Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
                Universidad de Sevilla, Spain
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AdlH VdL. Performed the experiments: AdlH SF. Analyzed the data: AdlH VdL. Wrote the paper: AdlH VdL.

                [¤]

                Current address: Centre for Infectious Diseases, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom

                Article
                PGENETICS-D-12-01542
                10.1371/journal.pgen.1002963
                3469447
                23071444
                66611a55-45ea-40d5-b848-a0a6e57a4926
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 June 2012
                : 7 August 2012
                Page count
                Pages: 12
                Funding
                This work was supported by the BIO and FEDER CONSOLIDER-INGENIO programmes of the Spanish Ministry of Economy and Competitiveness, by the MICROME and ST-FLOW contracts of the EU, and by funding from the Autonomous Community of Madrid (PROMPT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biotechnology
                Environmental Biotechnology
                Genetics
                Gene Expression
                Gene Networks
                Microbiology
                Microbial Evolution
                Synthetic Biology
                Systems Biology

                Genetics
                Genetics

                Comments

                Comment on this article