4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shifting Paradigms for Suppressing Fibrosis in Kidney Transplants: Supplementing Perfusion Solutions With Anti-fibrotic Drugs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Great efforts have been made toward addressing the demand for donor kidneys. One of the most promising approaches is to use kidneys from donation after circulatory death donors. These kidneys, however, suffer from more severe ischemia and reperfusion injury than those obtained via donation after brain death and are thus more prone to develop interstitial fibrosis and tubular atrophy. Even though machine perfusion is increasingly used to reduce ischemia and reperfusion injury, there are no effective treatments available to ameliorate interstitial fibrosis and tubular atrophy, forcing patients to resume dialysis, undergo re-transplantation, or suffer from premature death. Safe and effective anti-fibrotic therapies are therefore greatly desired. We propose a new therapeutic approach in which machine perfusion solutions are supplemented with anti-fibrotic compounds. This allows the use of higher concentrations than those used in humans whilst eliminating side effects in other organs. To the authors' knowledge, no one has reviewed whether such an approach could reduce interstitial fibrosis and tubular atrophy; we therefore set out to explore its merit. In this review, we first provide background information on ischemia and reperfusion injury as well as interstitial fibrosis and tubular atrophy, after which we describe currently available approaches for preserving donor kidneys. We then present an evaluation of selected compounds. To identify promising compounds, we analyzed publications describing the effects of anti-fibrotic molecules in precision-cut kidneys slices, which are viable explants that can be cultured ex vivo for up to a few days whilst retaining functional and structural features. LY2109761, galunisertib, imatinib, nintedanib, and butaprost were shown to exert anti-fibrotic effects in slices within a relatively short timeframe (<48 h) and are therefore considered to be excellent candidates for follow-up ex vivo machine perfusion studies.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis.

          Nintedanib (formerly known as BIBF 1120) is an intracellular inhibitor that targets multiple tyrosine kinases. A phase 2 trial suggested that treatment with 150 mg of nintedanib twice daily reduced lung-function decline and acute exacerbations in patients with idiopathic pulmonary fibrosis. We conducted two replicate 52-week, randomized, double-blind, phase 3 trials (INPULSIS-1 and INPULSIS-2) to evaluate the efficacy and safety of 150 mg of nintedanib twice daily as compared with placebo in patients with idiopathic pulmonary fibrosis. The primary end point was the annual rate of decline in forced vital capacity (FVC). Key secondary end points were the time to the first acute exacerbation and the change from baseline in the total score on the St. George's Respiratory Questionnaire, both assessed over a 52-week period. A total of 1066 patients were randomly assigned in a 3:2 ratio to receive nintedanib or placebo. The adjusted annual rate of change in FVC was -114.7 ml with nintedanib versus -239.9 ml with placebo (difference, 125.3 ml; 95% confidence interval [CI], 77.7 to 172.8; P<0.001) in INPULSIS-1 and -113.6 ml with nintedanib versus -207.3 ml with placebo (difference, 93.7 ml; 95% CI, 44.8 to 142.7; P<0.001) in INPULSIS-2. In INPULSIS-1, there was no significant difference between the nintedanib and placebo groups in the time to the first acute exacerbation (hazard ratio with nintedanib, 1.15; 95% CI, 0.54 to 2.42; P=0.67); in INPULSIS-2, there was a significant benefit with nintedanib versus placebo (hazard ratio, 0.38; 95% CI, 0.19 to 0.77; P=0.005). The most frequent adverse event in the nintedanib groups was diarrhea, with rates of 61.5% and 18.6% in the nintedanib and placebo groups, respectively, in INPULSIS-1 and 63.2% and 18.3% in the two groups, respectively, in INPULSIS-2. In patients with idiopathic pulmonary fibrosis, nintedanib reduced the decline in FVC, which is consistent with a slowing of disease progression; nintedanib was frequently associated with diarrhea, which led to discontinuation of the study medication in less than 5% of patients. (Funded by Boehringer Ingelheim; INPULSIS-1 and INPULSIS-2 ClinicalTrials.gov numbers, NCT01335464 and NCT01335477.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular matrix structure.

            Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Origin and function of myofibroblasts in kidney fibrosis.

              Myofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation. The nonproliferating myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition program (10%) and the epithelial-to-mesenchymal transition program (5%). Specific deletion of Tgfbr2 in α-smooth muscle actin (αSMA)(+) cells revealed the importance of this pathway in the recruitment of myofibroblasts through differentiation. Using genetic mouse models and a fate-mapping strategy, we determined that vascular pericytes probably do not contribute to the emergence of myofibroblasts or fibrosis. Our data suggest that targeting diverse pathways is required to substantially inhibit the composite accumulation of myofibroblasts in kidney fibrosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                10 January 2022
                2021
                : 8
                : 806774
                Affiliations
                [1] 1Department of Surgery, University Medical Center Groningen, University of Groningen , Groningen, Netherlands
                [2] 2Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen , Groningen, Netherlands
                Author notes

                Edited by: Ihsan Ullah, Khyber Medical University, Pakistan

                Reviewed by: Hee-Seong Jang, Icahn School of Medicine at Mount Sinai, United States; Florian Grahammer, University Medical Center Hamburg-Eppendorf, Germany

                *Correspondence: L. Leonie van Leeuwen l.l.van.leeuwen@ 123456umcg.nl

                This article was submitted to Pathology, a section of the journal Frontiers in Medicine

                Article
                10.3389/fmed.2021.806774
                8784659
                35083254
                6998b0c6-35c3-44c8-9dcd-e386d07ad9e1
                Copyright © 2022 van Leeuwen, Leuvenink, Olinga and Ruigrok.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 November 2021
                : 16 December 2021
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 107, Pages: 12, Words: 8783
                Categories
                Medicine
                Review

                renal transplantation,machine perfusion,iri,donation after circulatory death (dcd),personalized medicine,if/ta,precision cut tissue slices

                Comments

                Comment on this article