8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      C5a induces A549 cell proliferation of non-small cell lung cancer via GDF15 gene activation mediated by GCN5-dependent KLF5 acetylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and multiple evidence has confirmed that C5a production is elevated in NSCLC microenvironment. Although NSCLC cell proliferation induced by C5a has been reported, the involved mechanism has not been elucidated. In this study, we examined the proliferation-related genes (i.e., KLF5, GCN5, and GDF15) and C5a receptor (C5aR) expression in tumor tissues as well as C5a concentration in plasma of NSCLC patients, and then determined the roles of KLF5, GCN5, and GDF15 in C5a-triggered NSCLC cell proliferation and the related mechanism both in vitro and in vivo. Our results found that the expression of KLF5, GCN5, GDF15, C5aR, and C5a was significantly upregulated in NSCLC patients. Mechanistic exploration in vitro revealed that C5a could facilitate A549 cell proliferation through increasing KLF5, GCN5, and GDF15 expression. Besides, KLF5 and GCN5 could form a complex, binding to GDF15 promoter in a KLF5-dependent manner and leading to GDF15 gene transcription. More importantly, GCN5-mediated KLF5 acetylation contributing to GDF15 gene transcription and cell proliferation upon C5a stimulation, the region (−103 to +58 nt) of GDF15 promoter which KLF5 could bind to, and two new KLF5 lysine sites (K335 and K391) acetylated by GCN5 were identified for the first time. Furthermore, our experiment in vivo demonstrated that the growth of xenograft tumors in BALB/c nude mice was greatly suppressed by the silence of KLF5, GCN5, or GDF15. Collectively, these findings disclose that C5a-driven KLF5–GCN5–GDF15 axis had a critical role in NSCLC proliferation and might serve as targets for NSCLC therapy.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma

          Abstract Recently, long non-coding RNAs (lncRNAs) have been shown to have important regulatory roles in human cancer biology. In our study, we found that lncRNA CCAT1, whose expression is significantly increased and is correlated with outcomes in Esophageal Squamous Cell Carcinoma (ESCC). Consecutive experiments confirmed that H3K27-acetylation could activate expression of colon cancer associated transcript-1 (CCAT1). Further experiments revealed that CCAT1 knockdown significantly repressed the proliferation and migration both in vitro and in vivo. RNA-seq analysis revealed that CCAT1 knockdown preferentially affected genes that are linked to cell proliferation, cell migration and cell adhesion. Mechanistic investigations found that CCAT1 could serve as a scaffold for two distinct epigenetic modification complexes (5΄ domain of CCAT1 binding Polycomb Repressive Complex 2 (PRC2) while 3΄ domain of CCAT1 binding SUV39H1) and modulate the histone methylation of promoter of SPRY4 (sprouty RTK signaling antagonist 4) in nucleus. In cytoplasm, CCAT1 regulates HOXB13 as a molecular decoy for miR-7, a microRNA that targets both CCAT1 and HOXB13, thus facilitating cell growth and migration. Together, our data demonstrated the important roles of CCAT1 in ESCC oncogenesis and might serve as targets for ESCC diagnosis and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase

            Histone modifications, such as the frequently occurring lysine succinylation, are central to the regulation of chromatin-based processes. However, the mechanism and functional consequences of histone succinylation are unknown. Here we show that the α-ketoglutarate dehydrogenase (α-KGDH) complex is localized in the nucleus in human cell lines and binds to lysine acetyltransferase 2A (KAT2A, also known as GCN5) in the promoter regions of genes. We show that succinyl-coenzyme A (succinyl-CoA) binds to KAT2A. The crystal structure of the catalytic domain of KAT2A in complex with succinyl-CoA at 2.3 Å resolution shows that succinyl-CoA binds to a deep cleft of KAT2A with the succinyl moiety pointing towards the end of a flexible loop 3, which adopts different structural conformations in succinyl-CoA-bound and acetyl-CoA-bound forms. Site-directed mutagenesis indicates that tyrosine 645 in this loop has an important role in the selective binding of succinyl-CoA over acetyl-CoA. KAT2A acts as a succinyltransferase and succinylates histone H3 on lysine 79, with a maximum frequency around the transcription start sites of genes. Preventing the α-KGDH complex from entering the nucleus, or expression of KAT2A(Tyr645Ala), reduces gene expression and inhibits tumour cell proliferation and tumour growth. These findings reveal an important mechanism of histone modification and demonstrate that local generation of succinyl-CoA by the nuclear α-KGDH complex coupled with the succinyltransferase activity of KAT2A is instrumental in histone succinylation, tumour cell proliferation, and tumour development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases.

              KLF5 (Kruppel-like factor 5) is a basic transcription factor binding to GC boxes at a number of gene promoters and regulating their transcription. KLF5 is expressed during development and, in adults, with higher levels in proliferating epithelial cells. The expression and activity of KLF5 are regulated by multiple signaling pathways, including Ras/MAPK, PKC, and TGFbeta, and various posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and sumoylation. Consistently, KLF5 mediates the signaling functions in cell proliferation, cell cycle, apoptosis, migration, differentiation, and stemness by regulating gene expression in response to environment stimuli. The expression of KLF5 is frequently abnormal in human cancers and in cardiovascular disease-associated vascular smooth muscle cells (VSMCs). Due to its significant functions in cell proliferation, survival, and differentiation, KLF5 could be a potential diagnostic biomarker and therapeutic target for cancer and cardiovascular diseases.
                Bookmark

                Author and article information

                Contributors
                +86 25 86869459 , shuyqtg@126.com
                Journal
                Oncogene
                Oncogene
                Oncogene
                Nature Publishing Group UK (London )
                0950-9232
                1476-5594
                18 May 2018
                18 May 2018
                2018
                : 37
                : 35
                : 4821-4837
                Affiliations
                [1 ]ISNI 0000 0004 1799 0784, GRID grid.412676.0, Department of Oncology, , The First Affiliated Hospital of Nanjing Medical University, ; Nanjing, China
                [2 ]ISNI 0000 0000 9255 8984, GRID grid.89957.3a, Department of Immunology, , Nanjing Medical University, ; Nanjing, China
                [3 ]GRID grid.452511.6, Department of Pathology, , The Second Affiliated Hospital of Nanjing Medical University, ; Nanjing, China
                [4 ]ISNI 0000 0004 1799 0784, GRID grid.412676.0, Department of Pathology, , The First Affiliated Hospital of Nanjing Medical University, ; Nanjing, China
                [5 ]ISNI 0000 0000 9255 8984, GRID grid.89957.3a, Department of Biochemistry and Molecular Biology, , Nanjing Medical University, ; Nanjing, China
                [6 ]ISNI 0000 0000 9255 8984, GRID grid.89957.3a, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, , Nanjing Medical University, ; Nanjing, China
                Article
                298
                10.1038/s41388-018-0298-9
                6117268
                29773900
                6a936481-8f6c-45bf-a9ab-3ac837bc1c4e
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 September 2017
                : 23 March 2018
                : 13 April 2018
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2018

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article