0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An HFman Probe-Based Multiplex Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Simultaneous Detection of Hantaan and Seoul Viruses

      , , , , , , ,
      Diagnostics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hantaviruses are zoonotic pathogens that are widely distributed worldwide. Hantaan virus (HTNV) and Seoul virus (SEOV) are two most common hantaviruses that infect humans and cause hemorrhagic fever with renal syndrome (HFRS). Rapid and sensitive detection of HTNV and SEOV are crucial for surveillance, clinical treatment and management of HFRS. This study aimed to develop a rapid HFman probe-based mulstiplex reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to simultaneously detect HTNV and SEOV. A novel multiplex RT-LAMP assay was developed, and 46 serum samples obtained from clinically suspected patients were used for evaluation. The novel RT-LAMP assay can detect as low as 3 copies/reaction of hantaviruses with a detection limit of 41 and 73 copies per reaction for HTNV and SEOV, respectively. A clinical evaluation showed that the consistencies of the multiplex RT-LAMP with RT-qPCR assay were 100% and 97.8% for HTNV and SEOV, respectively. In view of the high prevalence of HTNV and SEOV in rural areas with high rodent density, a colorimetric visual determination method was also developed for point-of-care testing (POCT) for the diagnosis of the two viruses. The novel multiplex RT-LAMP assay is a sensitive, specific, and efficient method for simultaneously detecting HTNV and SEOV.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Loop-mediated isothermal amplification of DNA.

          T. Notomi (2000)
          We have developed a novel method, termed loop-mediated isothermal amplification (LAMP), that amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions. This method employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA. An inner primer containing sequences of the sense and antisense strands of the target DNA initiates LAMP. The following strand displacement DNA synthesis primed by an outer primer releases a single-stranded DNA. This serves as template for DNA synthesis primed by the second inner and outer primers that hybridize to the other end of the target, which produces a stem-loop DNA structure. In subsequent LAMP cycling one inner primer hybridizes to the loop on the product and initiates displacement DNA synthesis, yielding the original stem-loop DNA and a new stem-loop DNA with a stem twice as long. The cycling reaction continues with accumulation of 10(9) copies of target in less than an hour. The final products are stem-loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by annealing between alternately inverted repeats of the target in the same strand. Because LAMP recognizes the target by six distinct sequences initially and by four distinct sequences afterwards, it is expected to amplify the target sequence with high selectivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation.

            The loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method that uses only one type of enzyme. One of the characteristics of the LAMP method is its ability to synthesize extremely large amount of DNA. Accordingly, a large amount of by-product, pyrophosphate ion, is produced, yielding white precipitate of magnesium pyrophosphate in the reaction mixture. Judging the presence or absence of this white precipitate allows easy distinction of whether nucleic acid was amplified by the LAMP method. Since an increase in the turbidity of the reaction mixture according to the production of precipitate correlates with the amount of DNA synthesized, real-time monitoring of the LAMP reaction was achieved by real-time measurement of turbidity. Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A global perspective on hantavirus ecology, epidemiology, and disease.

              Hantaviruses are enzootic viruses that maintain persistent infections in their rodent hosts without apparent disease symptoms. The spillover of these viruses to humans can lead to one of two serious illnesses, hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and natural history of these viruses following an increase in the number of outbreaks in the Americas. In this review, current concepts regarding the ecology of and disease associated with these serious human pathogens are presented. Priorities for future research suggest an integration of the ecology and evolution of these and other host-virus ecosystems through modeling and hypothesis-driven research with the risk of emergence, host switching/spillover, and disease transmission to humans.
                Bookmark

                Author and article information

                Journal
                DIAGC9
                Diagnostics
                Diagnostics
                MDPI AG
                2075-4418
                August 2022
                August 10 2022
                : 12
                : 8
                : 1925
                Article
                10.3390/diagnostics12081925
                36010275
                6b8ea289-8ebe-4fe1-aa92-5718a02ca139
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article