17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Genomics Reveals Thousands of Novel Chemosensory Genes and Massive Changes in Chemoreceptor Repertories across Chelicerates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemoreception is a widespread biological function that is essential for the survival, reproduction, and social communication of animals. Though the molecular mechanisms underlying chemoreception are relatively well known in insects, they are poorly studied in the other major arthropod lineages. Current availability of a number of chelicerate genomes constitutes a great opportunity to better characterize gene families involved in this important function in a lineage that emerged and colonized land independently of insects. At the same time, that offers new opportunities and challenges for the study of this interesting animal branch in many translational research areas. Here, we have performed a comprehensive comparative genomics study that explicitly considers the high fragmentation of available draft genomes and that for the first time included complete genome data that cover most of the chelicerate diversity. Our exhaustive searches exposed thousands of previously uncharacterized chemosensory sequences, most of them encoding members of the gustatory and ionotropic receptor families. The phylogenetic and gene turnover analyses of these sequences indicated that the whole-genome duplication events proposed for this subphylum would not explain the differences in the number of chemoreceptors observed across species. A constant and prolonged gene birth and death process, altered by episodic bursts of gene duplication yielding lineage-specific expansions, has contributed significantly to the extant chemosensory diversity in this group of animals. This study also provides valuable insights into the origin and functional diversification of other relevant chemosensory gene families different from receptors, such as odorant-binding proteins and other related molecules.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          TimeTree: a public knowledge-base of divergence times among organisms.

          Biologists and other scientists routinely need to know times of divergence between species and to construct phylogenies calibrated to time (timetrees). Published studies reporting time estimates from molecular data have been increasing rapidly, but the data have been largely inaccessible to the greater community of scientists because of their complexity. TimeTree brings these data together in a consistent format and uses a hierarchical structure, corresponding to the tree of life, to maximize their utility. Results are presented and summarized, allowing users to quickly determine the range and robustness of time estimates and the degree of consensus from the published literature. TimeTree is available at http://www.timetree.net
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two chemosensory receptors together mediate carbon dioxide detection in Drosophila.

            Blood-feeding insects, including the malaria mosquito Anopheles gambiae, use highly specialized and sensitive olfactory systems to locate their hosts. This is accomplished by detecting and following plumes of volatile host emissions, which include carbon dioxide (CO2). CO2 is sensed by a population of olfactory sensory neurons in the maxillary palps of mosquitoes and in the antennae of the more genetically tractable fruitfly, Drosophila melanogaster. The molecular identity of the chemosensory CO2 receptor, however, remains unknown. Here we report that CO2-responsive neurons in Drosophila co-express a pair of chemosensory receptors, Gr21a and Gr63a, at both larval and adult life stages. We identify mosquito homologues of Gr21a and Gr63a, GPRGR22 and GPRGR24, and show that these are co-expressed in A. gambiae maxillary palps. We show that Gr21a and Gr63a together are sufficient for olfactory CO2-chemosensation in Drosophila. Ectopic expression of Gr21a and Gr63a together confers CO2 sensitivity on CO2-insensitive olfactory neurons, but neither gustatory receptor alone has this function. Mutant flies lacking Gr63a lose both electrophysiological and behavioural responses to CO2. Knowledge of the molecular identity of the insect olfactory CO2 receptors may spur the development of novel mosquito control strategies designed to take advantage of this unique and critical olfactory pathway. This in turn could bolster the worldwide fight against malaria and other insect-borne diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NOTUNG: a program for dating gene duplications and optimizing gene family trees.

              Large scale gene duplication is a major force driving the evolution of genetic functional innovation. Whole genome duplications are widely believed to have played an important role in the evolution of the maize, yeast, and vertebrate genomes. The use of evolutionary trees to analyze the history of gene duplication and estimate duplication times provides a powerful tool for studying this process. Many studies in the molecular evolution literature have used this approach on small data sets, using analyses performed by hand. The rapid growth of genetic sequence data will soon allow similar studies on a genomic scale, but such studies will be limited unless the analysis can be automated. Even existing data sets admit alternative hypotheses that would be too tedious to consider without automation. In this paper, we describe a program called NOTUNG that facilitates large scale analysis, using both rooted and unrooted trees. When tested on trees analyzed in the literature, NOTUNG consistently yielded results that agree with the assessments in the original publications. Thus, NOTUNG provides a basic building block for inferring duplication dates from gene trees automatically and can also be used as an exploratory analysis tool for evaluating alternative hypotheses.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                May 2018
                18 April 2018
                18 April 2018
                : 10
                : 5
                : 1221-1238
                Affiliations
                Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
                Author notes

                Data deposition: All data generated or analyzed during this study are included in this published article (and its supplementary file, Supplementary Material online).

                Corresponding authors: E-mails: jrozasub.edu;elsanchez@ 123456ub.edu .
                Article
                evy081
                10.1093/gbe/evy081
                5952958
                29788250
                6bc5fb9a-9a94-4092-b6c7-5ab827a66f7c
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 17 April 2018
                Page count
                Pages: 16
                Funding
                Funded by: Ministerio de Economía y Competitividad
                Award ID: CGL2013-45211
                Award ID: CGL2016-75255
                Funded by: Comissió Interdepartamental de Recerca I Innovació Tecnològica
                Award ID: 2014SGR-1055
                Funded by: Ministerio de Economía y Competitividad
                Award ID: BES-2014-068437
                Categories
                Research Article

                Genetics
                chemosensory gene family,gustatory receptors,ionotropic receptors,acari,spiders,scorpions
                Genetics
                chemosensory gene family, gustatory receptors, ionotropic receptors, acari, spiders, scorpions

                Comments

                Comment on this article