3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.

          Related collections

          Most cited references221

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The M1 and M2 paradigm of macrophage activation: time for reassessment

          Macrophages are endowed with a variety of receptors for lineage-determining growth factors, T helper (Th) cell cytokines, and B cell, host, and microbial products. In tissues, macrophages mature and are activated in a dynamic response to combinations of these stimuli to acquire specialized functional phenotypes. As for the lymphocyte system, a dichotomy has been proposed for macrophage activation: classic vs. alternative, also M1 and M2, respectively. In view of recent research about macrophage functions and the increasing number of immune-relevant ligands, a revision of the model is needed. Here, we assess how cytokines and pathogen signals influence their functional phenotypes and the evidence for M1 and M2 functions and revisit a paradigm initially based on the role of a restricted set of selected ligands in the immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Succinate is an inflammatory signal that induces IL-1β through HIF-1α.

            Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the 'GABA (γ-aminobutyric acid) shunt' pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protective and pathogenic functions of macrophage subsets.

              Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals. They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals. In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis. We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing. Finally, we briefly discuss the characterization of macrophage heterogeneity in humans.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                23 September 2021
                2021
                23 September 2021
                : 12
                : 747387
                Affiliations
                [1] 1 Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham , Birmingham, United Kingdom
                [2] 2 Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust , Birmingham, United Kingdom
                [3] 3 Division of Vaccine Discovery, La Jolla Institute for Immunology , La Jolla, CA, United States
                [4] 4 Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224 , Paris, France
                [5] 5 Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham, United Kingdom
                Author notes

                Edited by: Suzie Hingley-Wilson, University of Surrey, United Kingdom

                Reviewed by: Ioannis Mitroulis, Democritus University of Thrace, Greece; David George Russell, Cornell University, United States

                *Correspondence: Alba Llibre, a.llibre@ 123456bham.ac.uk ; Claudio Mauro, c.mauro@ 123456bham.ac.uk

                †These authors have contributed equally to this work

                This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.747387
                8495197
                34630426
                6bd9028f-24d7-4767-a8c3-1469fcca7f41
                Copyright © 2021 Llibre, Dedicoat, Burel, Demangel, O’Shea and Mauro

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 July 2021
                : 08 September 2021
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 223, Pages: 16, Words: 7898
                Categories
                Immunology
                Review

                Immunology
                mycobacteria,macrophage,immunometabolism,host-directed therapies,tuberculosis
                Immunology
                mycobacteria, macrophage, immunometabolism, host-directed therapies, tuberculosis

                Comments

                Comment on this article