Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis.

          Results

          Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG), PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes.

          Conclusion

          Our findings show that (a) molecular evolution of paralogs correlates with their expression pattern; (b) gene diversification is obtained through massive genomic rearrangements; and (c) splicing modification contributes to the functional specialization of novel genes.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The probability of duplicate gene preservation by subfunctionalization.

          It has often been argued that gene-duplication events are most commonly followed by a mutational event that silences one member of the pair, while on rare occasions both members of the pair are preserved as one acquires a mutation with a beneficial function and the other retains the original function. However, empirical evidence from genome duplication events suggests that gene duplicates are preserved in genomes far more commonly and for periods far in excess of the expectations under this model, and whereas some gene duplicates clearly evolve new functions, there is little evidence that this is the most common mechanism of duplicate-gene preservation. An alternative hypothesis is that gene duplicates are frequently preserved by subfunctionalization, whereby both members of a pair experience degenerative mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We consider the ways in which the probability of duplicate-gene preservation by such complementary mutations is modified by aspects of gene structure, degree of linkage, mutation rates and effects, and population size. Even if most mutations cause complete loss-of-subfunction, the probability of duplicate-gene preservation can be appreciable if the long-term effective population size is on the order of 10(5) or smaller, especially if there are more than two independently mutable subfunctions per locus. Even a moderate incidence of partial loss-of-function mutations greatly elevates the probability of preservation. The model proposed herein leads to quantitative predictions that are consistent with observations on the frequency of long-term duplicate gene preservation and with observations that indicate that a common fate of the members of duplicate-gene pairs is the partitioning of tissue-specific patterns of expression of the ancestral gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative genomics of the eukaryotes.

            A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Highly expressed genes in yeast evolve slowly.

                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2007
                4 October 2007
                : 7
                : 187
                Affiliations
                [1 ]Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
                Article
                1471-2148-7-187
                10.1186/1471-2148-7-187
                2082429
                17916234
                6c55143a-4e7b-4272-900e-ced1e60a3afc
                Copyright © 2007 Fumasoni et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 July 2007
                : 4 October 2007
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article