Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the brain. Numerous subtypes of GI vagal afferent have been identified but their individual roles in gut function and feeding regulation are unclear. In the past decade, technical approaches to selectively target vagal afferent subtypes and to assess their function has significantly progressed. This review examines the classification of GI vagal afferent subtypes and discusses the current available techniques to study vagal afferents. Investigating the distribution of GI vagal afferent subtypes and understanding how to access and modulate individual populations are essential to dissect their fundamental roles in the gut-brain axis.

          Related collections

          Most cited references277

          • Record: found
          • Abstract: found
          • Article: not found

          Origins and Mechanisms of miRNAs and siRNAs.

          Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DREADDs for Neuroscientists.

            Bryan Roth (2016)
            To understand brain function, it is essential that we discover how cellular signaling specifies normal and pathological brain function. In this regard, chemogenetic technologies represent valuable platforms for manipulating neuronal and non-neuronal signal transduction in a cell-type-specific fashion in freely moving animals. Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic tools are now commonly used by neuroscientists to identify the circuitry and cellular signals that specify behavior, perceptions, emotions, innate drives, and motor functions in species ranging from flies to nonhuman primates. Here I provide a primer on DREADDs highlighting key technical and conceptual considerations and identify challenges for chemogenetics going forward.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps

              The ability to silence the activity of genetically specified neurons in a temporally precise fashion would open up the ability to investigate the causal role of specific cell classes in neural computations, behaviors, and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate very powerful, safe, multiple-color silencing of neural activity. The gene archaerhodopsin-31 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. In addition, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally-relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2,3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans 4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue vs. red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of “optogenetic” voltage and ion modulator, which will broadly empower new neuroscientific, biological, neurological, and psychiatric investigations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                11 June 2020
                2020
                : 11
                : 643
                Affiliations
                [1] 1Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide , Adelaide, SA, Australia
                [2] 2Department of Pharmacodynamics, College of Pharmacy, University of Florida , Gainesville, FL, United States
                [3] 3Center for Integrative Cardiovascular and Metabolic Disease, University of Florida , Gainesville, FL, United States
                [4] 4Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute , Adelaide, SA, Australia
                Author notes

                Edited by: Catia Sternini, University of California, Los Angeles, United States

                Reviewed by: Nick Spencer, Flinders University, Australia; Edward A. Fox, Purdue University, United States

                *Correspondence: Amanda J. Page, amanda.page@ 123456adelaide.edu.au

                This article was submitted to Gastrointestinal Sciences, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.00643
                7300233
                32595525
                6cdfbf2d-bab2-4c7b-8b39-add4d122422f
                Copyright © 2020 Wang, de Lartigue and Page.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 March 2020
                : 20 May 2020
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 354, Pages: 27, Words: 0
                Funding
                Funded by: Department of Foreign Affairs and Trade, Australian Government 10.13039/501100000996
                Funded by: National Institutes of Health 10.13039/100000002
                Categories
                Physiology
                Review

                Anatomy & Physiology
                gastrointestinal tract,vagal afferent subtypes,gut brain axis,molecular tools,feeding behaviour

                Comments

                Comment on this article