118
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).

          Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent 'tissue-specific' isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central 'core' of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Performance comparison of benchtop high-throughput sequencing platforms.

            Three benchtop high-throughput sequencing instruments are now available. The 454 GS Junior (Roche), MiSeq (Illumina) and Ion Torrent PGM (Life Technologies) are laser-printer sized and offer modest set-up and running costs. Each instrument can generate data required for a draft bacterial genome sequence in days, making them attractive for identifying and characterizing pathogens in the clinical setting. We compared the performance of these instruments by sequencing an isolate of Escherichia coli O104:H4, which caused an outbreak of food poisoning in Germany in 2011. The MiSeq had the highest throughput per run (1.6 Gb/run, 60 Mb/h) and lowest error rates. The 454 GS Junior generated the longest reads (up to 600 bases) and most contiguous assemblies but had the lowest throughput (70 Mb/run, 9 Mb/h). Run in 100-bp mode, the Ion Torrent PGM had the highest throughput (80–100 Mb/h). Unlike the MiSeq, the Ion Torrent PGM and 454 GS Junior both produced homopolymer-associated indel errors (1.5 and 0.38 errors per 100 bases, respectively).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A whole-genome assembly of Drosophila.

              We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly's sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres. Comparison with a previously sequenced 2.9- megabase region indicates that sequencing accuracy within nonrepetitive segments is greater than 99. 99% without manual curation. As such, this initial reconstruction of the Drosophila sequence should be of substantial value to the scientific community.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                13 April 2016
                April 2016
                : 14
                : 4
                : 78
                Affiliations
                Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK; silke.alt@ 123456jic.ac.uk (S.A.); mervyn.bibb@ 123456jic.ac.uk (M.J.B.)
                Author notes
                [* ]Correspondence: juan-pablo.gomez-escribano@ 123456jic.ac.uk ; Tel.: +44-(0)1603-450000
                Article
                marinedrugs-14-00078
                10.3390/md14040078
                4849082
                27089350
                6e27cbf0-bf78-4853-bdf5-a2a6250a4c4a
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 February 2016
                : 06 April 2016
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                actinomycetes,streptomyces,genome mining,pacbio,illumina,next generation sequencing

                Comments

                Comment on this article