11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Data-driven hypothesis weighting increases detection power in genome-scale multiple testing

      research-article
      , , , 1
      Nature methods

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypothesis weighting improves the power of large-scale multiple testing. We describe a method that uses covariates independent of the p-values under the null hypothesis, but informative of each test’s power or prior probability of the null hypothesis. Independent hypothesis weighting (IHW) increases power while controlling the false discovery rate (FDR). IHW is a practical approach to discover associations in large datasets as encountered in genomics and high-throughput biology. Availability: www.bioconductor.org/packages/IHW

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Independent filtering increases detection power for high-throughput experiments.

            With high-dimensional data, variable-by-variable statistical testing is often used to select variables whose behavior differs across conditions. Such an approach requires adjustment for multiple testing, which can result in low statistical power. A two-stage approach that first filters variables by a criterion independent of the test statistic, and then only tests variables which pass the filter, can provide higher power. We show that use of some filter/test statistics pairs presented in the literature may, however, lead to loss of type I error control. We describe other pairs which avoid this problem. In an application to microarray data, we found that gene-by-gene filtering by overall variance followed by a t-test increased the number of discoveries by 50%. We also show that this particular statistic pair induces a lower bound on fold-change among the set of discoveries. Independent filtering-using filter/test pairs that are independent under the null hypothesis but correlated under the alternative-is a general approach that can substantially increase the efficiency of experiments.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach

                Bookmark

                Author and article information

                Journal
                101215604
                32338
                Nat Methods
                Nat. Methods
                Nature methods
                1548-7091
                1548-7105
                8 June 2016
                30 May 2016
                July 2016
                30 November 2016
                : 13
                : 7
                : 577-580
                Affiliations
                European Molecular Biology Laboratory, Heidelberg, Germany
                Author notes
                [1 ]Corresponding Author: whuber@ 123456embl.de
                Article
                EMS68345
                10.1038/nmeth.3885
                4930141
                27240256
                6f41d9a3-cd1b-40b7-891f-74a2acf9082c

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article