62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetic and molecular epidemiology of adult diffuse glioma

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The WHO 2007 glioma classification system (based primarily on tumour histology) resulted in considerable interobserver variability and substantial variation in patient survival within grades. Furthermore, few risk factors for glioma were known. Discoveries over the past decade have deepened our understanding of the molecular alterations underlying glioma and have led to the identification of numerous genetic risk factors. The advances in molecular characterization of glioma have reframed our understanding of its biology and led to the development of a new classification system for glioma. The WHO 2016 classification system comprises five glioma subtypes, categorized by both tumour morphology and molecular genetic information, which led to reduced misclassification and improved consistency of outcomes within glioma subtypes. To date, 25 risk loci for glioma have been identified and several rare inherited mutations that might cause glioma in some families have been discovered. This Review focuses on the two dominant trends in glioma science: the characterization of diagnostic and prognostic tumour markers and the identification of genetic and other risk factors. An overview of the many challenges still facing glioma researchers is also included.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

          Summary Background Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. Methods In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. Findings During follow-up, 74 of 178 604 patients were diagnosed with leukaemia and 135 of 176 587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005–0·120; p=0·0097) and brain tumours (0·023, 0·010–0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46–6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50–74 mGy (mean dose 60·42 mGy) was 2·82 (1·33–6·03). Interpretation Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain cancer. Because these cancers are relatively rare, the cumulative absolute risks are small: in the 10 years after the first scan for patients younger than 10 years, one excess case of leukaemia and one excess case of brain tumour per 10 000 head CT scans is estimated to occur. Nevertheless, although clinical benefits should outweigh the small absolute risks, radiation doses from CT scans ought to be kept as low as possible and alternative procedures, which do not involve ionising radiation, should be considered if appropriate. Funding US National Cancer Institute and UK Department of Health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas.

            Somatic mutations in the IDH1 gene encoding cytosolic NADP+-dependent isocitrate dehydrogenase have been shown in the majority of astrocytomas, oligodendrogliomas and oligoastrocytomas of WHO grades II and III. IDH2 encoding mitochondrial NADP+-dependent isocitrate dehydrogenase is also mutated in these tumors, albeit at much lower frequencies. Preliminary data suggest an importance of IDH1 mutation for prognosis showing that patients with anaplastic astrocytomas, oligodendrogliomas and oligoastrocytomas harboring IDH1 mutations seem to fare much better than patients without this mutation in their tumors. To determine mutation types and their frequencies, we examined 1,010 diffuse gliomas. We detected 716 IDH1 mutations and 31 IDH2 mutations. We found 165 IDH1 (72.7%) and 2 IDH2 mutations (0.9%) in 227 diffuse astrocytomas WHO grade II, 146 IDH1 (64.0%) and 2 IDH2 mutations (0.9%) in 228 anaplastic astrocytomas WHO grade III, 105 IDH1 (82.0%) and 6 IDH2 mutations (4.7%) in 128 oligodendrogliomas WHO grade II, 121 IDH1 (69.5%) and 9 IDH2 mutations (5.2%) in 174 anaplastic oligodendrogliomas WHO grade III, 62 IDH1 (81.6%) and 1 IDH2 mutations (1.3%) in 76 oligoastrocytomas WHO grade II and 117 IDH1 (66.1%) and 11 IDH2 mutations (6.2%) in 177 anaplastic oligoastrocytomas WHO grade III. We report on an inverse association of IDH1 and IDH2 mutations in these gliomas and a non-random distribution of the mutation types within the tumor entities. IDH1 mutations of the R132C type are strongly associated with astrocytoma, while IDH2 mutations predominantly occur in oligodendroglial tumors. In addition, patients with anaplastic glioma harboring IDH1 mutations were on average 6 years younger than those without these alterations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advances in the molecular genetics of gliomas — implications for classification and therapy

              In 2016, a revised WHO classification of glioma was published, in which molecular data and traditional histological information are incorporated into integrated diagnoses. Herein, the authors highlight the developments in our understanding of the molecular genetics of gliomas that underlie this classification, and review the current landscape of molecular biomarkers used in the classification of disease subtypes. In addition, they discuss how these advances can promote the development of novel pathogenesis-based therapeutic approaches, paving the way to precision medicine.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neurology
                Nat Rev Neurol
                Springer Science and Business Media LLC
                1759-4758
                1759-4766
                June 21 2019
                Article
                10.1038/s41582-019-0220-2
                7286557
                31227792
                72ab78f3-ab83-40a8-8c27-c6979d5b53f2
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article