12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strangeness-driven phase transition in (proto)- neutron star matter

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The phase diagram of a system constituted of neutrons, protons, \(\Lambda\)-hyperons and electrons is evaluated in the mean-field approximation in the complete three-dimensional space given by the baryon, lepton and strange charge. It is shown that the phase diagram at sub-saturation densities is strongly affected by the electromagnetic interaction, while it is almost independent of the electric charge at supra-saturation density. As a consequence, stellar matter under the condition of strangeness equilibrium is expected to experience a first as well as a second-order strangeness-driven phase transition at high density, while the liquid-gas phase transition is expected to be quenched. An RPA calculation indicates that the presence of this critical point might have sizable implications for the neutrino propagation in core-collapse supernovae.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Shapiro delay measurement of a two solar mass neutron star

          Neutron stars are composed of the densest form of matter known to exist in our universe, and thus provide a unique laboratory for exploring the properties of cold matter at super-nuclear density. Measurements of the masses or radii of these objects can strongly constrain the neutron-star matter equation of state, and consequently the interior composition of neutron stars. Neutron stars that are visible as millisecond radio pulsars are especially useful in this respect, as timing observations of the radio pulses provide an extremely precise probe of both the pulsar's motion and the surrounding space-time metric. In particular, for a pulsar in a binary system, detection of the general relativistic Shapiro delay allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar PSR J1614-2230, which show a strong Shapiro delay signature. The implied pulsar mass of 1.97 +/- 0.04 M_sun is by far the highest yet measured with such certainty, and effectively rules out the presence of hyperons, bosons, or free quarks at densities comparable to the nuclear saturation density.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effects of nucleon-nucleon interactions on scattering of neutrinos in neutron matter

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Neutrino Interactions in Hot and Dense Matter

              We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star.
                Bookmark

                Author and article information

                Journal
                03 January 2013
                2013-05-13
                Article
                10.1103/PhysRevC.87.055809
                1301.0390
                7486cb7e-5713-4258-bd98-bb2268852c6c

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. C 87, 055809 (2013)
                7 pages, 5 figures; accepted for publication in Phys. Rev. C
                nucl-th

                Comments

                Comment on this article