28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNA biology of disease-associated microsatellite repeat expansions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.

          Related collections

          Most cited references224

          • Record: found
          • Abstract: found
          • Article: not found

          Translational control by 5'-untranslated regions of eukaryotic mRNAs.

          The eukaryotic 5' untranslated region (UTR) is critical for ribosome recruitment to the messenger RNA (mRNA) and start codon choice and plays a major role in the control of translation efficiency and shaping the cellular proteome. The ribosomal initiation complex is assembled on the mRNA via a cap-dependent or cap-independent mechanism. We describe various mechanisms controlling ribosome scanning and initiation codon selection by 5' upstream open reading frames, translation initiation factors, and primary and secondary structures of the 5'UTR, including particular sequence motifs. We also discuss translational control via phosphorylation of eukaryotic initiation factor 2, which is implicated in learning and memory, neurodegenerative diseases, and cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microsatellites in different eukaryotic genomes: survey and analysis.

            We examined the abundance of microsatellites with repeated unit lengths of 1-6 base pairs in several eukaryotic taxonomic groups: primates, rodents, other mammals, nonmammalian vertebrates, arthropods, Caenorhabditis elegans, plants, yeast, and other fungi. Distribution of simple sequence repeats was compared between exons, introns, and intergenic regions. Tri- and hexanucleotide repeats prevail in protein-coding exons of all taxa, whereas the dependence of repeat abundance on the length of the repeated unit shows a very different pattern as well as taxon-specific variation in intergenic regions and introns. Although it is known that coding and noncoding regions differ significantly in their microsatellite distribution, in addition we could demonstrate characteristic differences between intergenic regions and introns. We observed striking relative abundance of (CCG)(n)*(CGG)(n) trinucleotide repeats in intergenic regions of all vertebrates, in contrast to the almost complete lack of this motif from introns. Taxon-specific variation could also be detected in the frequency distributions of simple sequence motifs. Our results suggest that strand-slippage theories alone are insufficient to explain microsatellite distribution in the genome as a whole. Other possible factors contributing to the observed divergence are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome.

              Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in human brain. Within a 7.4 kb EcoRI genomic fragment, containing FMR-1 exonic sequences distal to a CpG island previously shown to be hypermethylated in fragile X patients, is a fragile X site-induced breakpoint cluster region that exhibits length variation in fragile X chromosomes. This fragment contains a lengthy CGG repeat that is 250 bp distal of the CpG island and maps within a FMR-1 exon. Localization of the brain-expressed FMR-1 gene to this EcoRI fragment suggests the involvement of this gene in the phenotypic expression of the fragile X syndrome.
                Bookmark

                Author and article information

                Contributors
                ktgagnon@siu.edu
                Journal
                Acta Neuropathol Commun
                Acta Neuropathol Commun
                Acta Neuropathologica Communications
                BioMed Central (London )
                2051-5960
                29 August 2017
                29 August 2017
                2017
                : 5
                : 63
                Affiliations
                [1 ]ISNI 0000 0001 0705 8684, GRID grid.280418.7, Department of Biochemistry and Molecular Biology, , Southern Illinois University, School of Medicine, ; Carbondale, Illinois USA
                [2 ]ISNI 0000 0001 1090 2313, GRID grid.411026.0, Department of Chemistry and Biochemistry, , Southern Illinois University, ; Carbondale, Illinois USA
                Article
                468
                10.1186/s40478-017-0468-y
                5574247
                28851463
                75998872-7983-4acd-bf3d-315e41433f82
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 28 June 2017
                : 22 August 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000005, U.S. Department of Defense;
                Award ID: W81XWH-16-1-0176
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100001441, Judith and Jean Pape Adams Charitable Foundation;
                Categories
                Review
                Custom metadata
                © The Author(s) 2017

                repeat expansion disease,microsatellite,tandem repeats,rna,splicing,transcription,transport,export,turnover,translation,mechanism,therapeutics,myotonic dystrophy,dm1,dm2,huntington's disease,hd,c9orf72,c9ftd/als,amyotrophic lateral sclerosis,spinocerebellar ataxia,sca,fragile x,sbma,fxtas

                Comments

                Comment on this article