2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of specific versus cross-training on running performance.

      European journal of applied physiology and occupational physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cross-training (XT) hypothesis suggests that despite the principle of specificity of training, athletes may improve performance in one mode of exercise by training using another mode. To test this hypothesis we studied 30 well-trained individuals (10 men, 20 women) in a randomized longitudinal trail. Subjects were evaluated before and after 8 weeks of enhanced training (+10%/week), accomplished by adding either running (R) or swimming (XT) to baseline running, versus continued baseline running (C). Both R (-26.4s) and XT (-13.2s) improved time trial (3.2 km) performance, whereas C did not (-5.4s). There were no significant changes during treadmill running in maximum oxygen uptake (VO2peak; -0.2, -6.0, and +2.7%), steady state submaximal VO2 at 2.68 m.s-1 (-1.2, -3.3 and +0.2 ml.kg-1.min-1), velocity at VO2peak (+0.05, +0.25 and +0.09 m.s-1) or accumulated O2 deficit (+11.2, -6.1 and +9.4%) in the R, XT or C groups, respectively. There was a significant increase in velocity associated with a blood lactate concentration of 4 mmol.l-1 in R but not in XT or C (+0.32, +0.07 and +0.08 m.s-1). There were significant changes in arm crank VO2peak (+5%) and arm crank VO2 at 4 mmol.l-1 (+6.4%) in XT. There was no significant changes in arm crank VO2peak (+1.3 and -7.7%) or arm crank VO2 at 4 mmol.l-1 (+0.8 and +0.4%) in R or C, respectively. The data suggest that muscularly non-similar XT may contribute to improved running performance but not to the same degree as increased specific training.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: not found
          • Article: not found

          Perceived exertion related to heart rate and blood lactate during arm and leg exercise

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            VO2 max and training indices as determinants of competitive running performance

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of training on lactate production and removal during progressive exercise in humans.

              To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.
                Bookmark

                Author and article information

                Journal
                7649149
                10.1007/BF00865035

                Comments

                Comment on this article