9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Bovine Serum Albumin Protein Backbone Reassembly Study: Strongly Twisted β-Sheet Structure Promotion upon Interaction with GO-PAMAM

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigates the formation of a graphene oxide-polyamidoamine dendrimer complex (GO-PAMAM) and its association and interaction with bovine serum albumin (BSA). Fourier-transform infrared spectrometry and X-ray photoelectron spectrometry indicated the formation of covalent linkage between the GO surface and PAMAM with 7.22% nitrogen content in the GO-PAMAM sample, and various interactions between BSA and GO-PAMAM, including π-π* interactions at 291.5 eV for the binding energy value. Thermogravimetric analysis highlighted the increasing thermal stability throughout the modification process, from 151 to 192 °C for the 10% weight loss temperature. Raman spectrometry and X-ray diffraction analysis were used in order to examine the complexes’ assembly, showing a prominent (0 0 2) lattice in GO-PAMAM. Dynamic light scattering tests proved the formation of stable graphenic and graphenic-protein aggregates. The secondary structure rearrangement of BSA after interaction with GO-PAMAM was investigated using circular dichroism spectroscopy. We have observed a shift from 10.9% β-sheet composition in native BSA to 64.9% β-sheet composition after the interaction with GO-PAMAM. This interaction promoted the rearrangement of the protein backbone, leading to strongly twisted β-sheet secondary structure architecture.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          DLS and zeta potential - What they are and what they are not?

          Adequate characterization of NPs (nanoparticles) is of paramount importance to develop well defined nanoformulations of therapeutic relevance. Determination of particle size and surface charge of NPs are indispensable for proper characterization of NPs. DLS (dynamic light scattering) and ZP (zeta potential) measurements have gained popularity as simple, easy and reproducible tools to ascertain particle size and surface charge. Unfortunately, on practical grounds plenty of challenges exist regarding these two techniques including inadequate understanding of the operating principles and dealing with critical issues like sample preparation and interpretation of the data. As both DLS and ZP have emerged from the realms of physical colloid chemistry - it is difficult for researchers engaged in nanomedicine research to master these two techniques. Additionally, there is little literature available in drug delivery research which offers a simple, concise account on these techniques. This review tries to address this issue while providing the fundamental principles of these techniques, summarizing the core mathematical principles and offering practical guidelines on tackling commonly encountered problems while running DLS and ZP measurements. Finally, the review tries to analyze the relevance of these two techniques from translatory perspective.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Raman Spectrum of Graphite

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications.

              This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π-π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graphene and graphene oxide.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                05 November 2020
                November 2020
                : 12
                : 11
                : 2603
                Affiliations
                [1 ]Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; andra_mihaela.onas@ 123456upb.ro (A.M.O.); iuliana.biru@ 123456upb.ro (I.E.B.); garea_alexandra@ 123456yahoo.co.uk (S.A.G.)
                [2 ]Academy of Romanian Scientists, 050094 Bucharest, Romania
                Author notes
                [* ]Correspondence: horia.iovu@ 123456upb.ro ; Tel.: +40-21-402-3922
                Article
                polymers-12-02603
                10.3390/polym12112603
                7694545
                33167588
                77d22fe6-933b-44a4-ac6c-e24a38f78b55
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 October 2020
                : 04 November 2020
                Categories
                Article

                graphene oxide (go),polyamidoamine (pamam) dendrimer,bovine serum albumin (bsa),protein interaction,circular dichroism spectroscopy,secondary structure evaluation

                Comments

                Comment on this article