19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Draft genome sequence of type strain HBR26 T and description of Rhizobium aethiopicum sp. nov.

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rhizobium aethiopicum sp. nov. is a newly proposed species within the genus Rhizobium. This species includes six rhizobial strains; which were isolated from root nodules of the legume plant Phaseolus vulgaris growing in soils of Ethiopia. The species fixes nitrogen effectively in symbiosis with the host plant P. vulgaris, and is composed of aerobic, Gram-negative staining, rod-shaped bacteria. The genome of type strain HBR26 T of R. aethiopicum sp. nov. was one of the rhizobial genomes sequenced as a part of the DOE JGI 2014 Genomic Encyclopedia project designed for soil and plant-associated and newly described type strains. The genome sequence is arranged in 62 scaffolds and consists of 6,557,588 bp length, with a 61% G + C content and 6221 protein-coding and 86 RNAs genes. The genome of HBR26 T contains repABC genes (plasmid replication genes) homologous to the genes found in five different Rhizobium etli CFN42 T plasmids, suggesting that HBR26 T may have five additional replicons other than the chromosome. In the genome of HBR26 T, the nodulation genes nodB, nodC, nodS, nodI, nodJ and nodD are located in the same module, and organized in a similar way as nod genes found in the genome of other known common bean-nodulating rhizobial species. nodA gene is found in a different scaffold, but it is also very similar to nodA genes of other bean-nodulating rhizobial strains. Though HBR26 T is distinct on the phylogenetic tree and based on ANI analysis (the highest value 90.2% ANI with CFN42 T) from other bean-nodulating species, these nod genes and most nitrogen-fixing genes found in the genome of HBR26 T share high identity with the corresponding genes of known bean-nodulating rhizobial species (96–100% identity). This suggests that symbiotic genes might be shared between bean-nodulating rhizobia through horizontal gene transfer. R. aethiopicum sp. nov. was grouped into the genus Rhizobium but was distinct from all recognized species of that genus by phylogenetic analyses of combined sequences of the housekeeping genes recA and glnII. The closest reference type strains for HBR26 T were R. etli CFN42 T (94% similarity of the combined recA and glnII sequences) and Rhizobium bangladeshense BLR175 T (93%). Genomic ANI calculation based on protein-coding genes also revealed that the closest reference strains were R. bangladeshense BLR175 T and R. etli CFN42 T with ANI values 91.8 and 90.2%, respectively. Nevertheless, the ANI values between HBR26 T and BLR175 T or CFN42 T are far lower than the cutoff value of ANI (> = 96%) between strains in the same species, confirming that HBR26 T belongs to a novel species. Thus, on the basis of phylogenetic, comparative genomic analyses and ANI results, we formally propose the creation of R. aethiopicum sp. nov. with strain HBR26 T (=HAMBI 3550 T=LMG 29711 T) as the type strain. The genome assembly and annotation data is deposited in the DOE JGI portal and also available at European Nucleotide Archive under accession numbers FMAJ01000001-FMAJ01000062.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s40793-017-0220-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

            Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence

                Bookmark

                Author and article information

                Contributors
                aregu.aserse@helsinki.fi
                Journal
                Stand Genomic Sci
                Stand Genomic Sci
                Standards in Genomic Sciences
                BioMed Central (London )
                1944-3277
                26 January 2017
                26 January 2017
                2017
                : 12
                : 14
                Affiliations
                [1 ]ISNI 0000 0004 0410 2071, GRID grid.7737.4, Department of Environmental Sciences, , University of Helsinki, ; Viikinkaari 2a, Helsinki, Finland
                [2 ]ISNI 0000 0004 0449 479X, GRID grid.451309.a, , DOE Joint Genome Institute, ; Walnut Creek, USA
                [3 ]ISNI 0000 0004 1936 738X, GRID grid.213876.9, Department of Microbiology, , University of Georgia, ; Biological Sciences Building, Athens, USA
                Article
                220
                10.1186/s40793-017-0220-z
                5278577
                79d2e2b3-8501-4760-9e6e-6744f3c61190
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 August 2016
                : 24 December 2016
                Funding
                Funded by: Suomen Akatemia (FI)
                Categories
                Extended Genome Report
                Custom metadata
                © The Author(s) 2017

                Genetics
                rhizobium aethiopicum,ethiopia,common bean,symbiotic,genome,average nucleotide identity
                Genetics
                rhizobium aethiopicum, ethiopia, common bean, symbiotic, genome, average nucleotide identity

                Comments

                Comment on this article