21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of miR-1 in the heart attenuates hippocampal synaptic vesicle exocytosis by the posttranscriptional regulation of SNAP-25 through the transportation of exosomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The link between cardiac diseases and cognitive deterioration has been accepted from the concept of “cardiogenic dementia”, which was proposed in the late 1970s. However, the molecular mechanism is unclarified.

          Methods

          The two animal models used in this study were cardiac-specific overexpression of microRNA-1-2 transgenic (Tg) mice and a myocardial infarction mouse model generated by left coronary artery ligation (LCA). First, we observed the microRNA-1 ( miR-1) level and synaptic vesicles (SV) distribution in the hippocampus using in situ hybridization and transmission electron microscopy (TEM) and evaluated the expression of vesicle exocytosis related proteins by western blotting. Second, we used dual luciferase reporter assay as well as antagonist and miRNA-masking techniques to identify the posttranscriptional regulatory effect of miR-1 on the Snap25 gene. Third, FM1–43 staining was performed to investigate the effect of miR-1 on synaptic vesicle exocytosis. Lastly, we used GW4869 to inhibit the biogenesis and secretion of exosomes to determine the transportation effect of exosomes for miR-1 from the heart to the brain.

          Results

          Compared with the levels in age-matched WT mice, miR-1 levels were increased in both the hearts and hippocampi of Tg mice, accompanied by the redistribution of SVs and the reduction in SV exocytosis-related protein SNAP-25 expression. In vitro studies showed that SNAP-25 protein expression was down- or upregulated by miR-1 overexpression or inhibition, respectively, however, unchanged by miRNA-masking the 3’UTR of the Snap25 gene. SV exocytosis was inhibited by miR-1 overexpression, which could be prevented by co-transfection with an anti- miR-1 oligonucleotide fragment (AMO-1). The knockdown of miR-1 by hippocampal stereotaxic injection of AMO-1 carried by a lentivirus vector (lenti-pre-AMO-1) led to the upregulation of SNAP-25 expression and prevented SV concentration in the synapses in the hippocampi of Tg mice. The application of GW4869 significantly reversed the increased miR-1 level in the blood and hippocampi as well as reduced the SNAP-25 protein levels in the hippocampi of both Tg and LCA mice.

          Conclusion

          The overexpression of miR-1 in the heart attenuated SV exocytosis in the hippocampus by posttranscriptionally regulating SNAP-25 through the transportation of exosomes. This study contributes to the understanding of the relationship between cardiovascular disease and brain dysfunction.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2.

          MicroRNAs (miRNAs) are endogenous noncoding RNAs, about 22 nucleotides in length, that mediate post-transcriptional gene silencing by annealing to inexactly complementary sequences in the 3'-untranslated regions of target mRNAs. Our current understanding of the functions of miRNAs relies mainly on their tissue-specific or developmental stage-dependent expression and their evolutionary conservation, and therefore is primarily limited to their involvement in developmental regulation and oncogenesis. Of more than 300 miRNAs that have been identified, miR-1 and miR-133 are considered to be muscle specific. Here we show that miR-1 is overexpressed in individuals with coronary artery disease, and that when overexpressed in normal or infarcted rat hearts, it exacerbates arrhythmogenesis. Elimination of miR-1 by an antisense inhibitor in infarcted rat hearts relieved arrhythmogenesis. miR-1 overexpression slowed conduction and depolarized the cytoplasmic membrane by post-transcriptionally repressing KCNJ2 (which encodes the K(+) channel subunit Kir2.1) and GJA1 (which encodes connexin 43), and this likely accounts at least in part for its arrhythmogenic potential. Thus, miR-1 may have important pathophysiological functions in the heart, and is a potential antiarrhythmic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cardiovascular Risk Factors Promote Brain Hypoperfusion Leading to Cognitive Decline and Dementia

            Heart disease is the major leading cause of death and disability in the world. Mainly affecting the elderly population, heart disease and its main outcome, cardiovascular disease, have become an important risk factor in the development of cognitive decline and Alzheimer's disease (AD). This paper examines the evidence linking chronic brain hypoperfusion induced by a variety of cardiovascular deficits in the development of cognitive impairment preceding AD. The evidence indicates a strong association between AD and cardiovascular risk factors, including ApoE4, atrial fibrillation, thrombotic events, hypertension, hypotension, heart failure, high serum markers of inflammation, coronary artery disease, low cardiac index, and valvular pathology. In elderly people whose cerebral perfusion is already diminished by their advanced age, additional reduction of cerebral blood flow stemming from abnormalities in the heart-brain vascular loop ostensibly increases the probability of developing AD. Evidence also suggests that a neuronal energy crisis brought on by relentless brain hypoperfusion may be responsible for protein synthesis abnormalities that later result in the classic neurodegenerative lesions involving the formation of amyloid-beta plaques and neurofibrillary tangles. Insight into how cardiovascular risk factors can induce progressive cognitive impairment offers an enhanced understanding of the multifactorial pathophysiology characterizing AD and ways at preventing or managing the cardiovascular precursors of this dementia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430.

              MicroRNAs (miRNAs) repress hundreds of target messenger RNAs (mRNAs), but the physiological roles of specific miRNA-mRNA interactions remain largely elusive. We report that zebrafish microRNA-430 (miR-430) dampens and balances the expression of the transforming growth factor-beta (TGF-beta) Nodal agonist squint and the TGF-beta Nodal antagonist lefty. To disrupt the interaction of specific miRNA-mRNA pairs, we developed target protector morpholinos complementary to miRNA binding sites in target mRNAs. Protection of squint or lefty mRNAs from miR-430 resulted in enhanced or reduced Nodal signaling, respectively. Simultaneous protection of squint and lefty or absence of miR-430 caused an imbalance and reduction in Nodal signaling. These findings establish an approach to analyze the in vivo roles of specific miRNA-mRNA pairs and reveal a requirement for miRNAs in dampening and balancing agonist/antagonist pairs.
                Bookmark

                Author and article information

                Contributors
                1159131600@qq.com
                1171740637@qq.com
                1024915550@qq.com
                379521667@qq.com
                1176649876@qq.com
                260686905@qq.com
                571737998@qq.com
                1663496539@qq.com
                987960050@qq.com
                798310721@qq.com
                137324812@qq.com
                164933306@qq.com
                +86 451 8666-1354 , bantao2000@163.com
                azhrbmu@126.com
                Journal
                Cell Commun Signal
                Cell Commun. Signal
                Cell Communication and Signaling : CCS
                BioMed Central (London )
                1478-811X
                29 November 2018
                29 November 2018
                2018
                : 16
                : 91
                Affiliations
                ISNI 0000 0001 2204 9268, GRID grid.410736.7, Department of Pharmacology, , College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), ; Harbin, 150086 Heilongjiang Province China
                Author information
                http://orcid.org/0000-0001-6496-7059
                Article
                303
                10.1186/s12964-018-0303-5
                6267908
                30497498
                7baff606-714e-4e5e-a624-828e2d15af73
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 September 2018
                : 13 November 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81671052
                Award ID: 81271207
                Award ID: 81870849
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Cell biology
                heart,hippocampus,synaptic vesicle exocytosis,microrna-1,snap-25
                Cell biology
                heart, hippocampus, synaptic vesicle exocytosis, microrna-1, snap-25

                Comments

                Comment on this article