12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of 3D printing in the fight against COVID-19 outbreak

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Along with the COVID-19 pandemic, urgent needs for medical and specialized products, especially personal protective equipment, has been overwhelming. The conventional production line of medical devices has been challenged by excessive global demand, and the need for an easy, low-cost and rapid fabrication method is felt more than ever. In a scramble to address this shortfall, manufacturers referred to additive manufacturing or 3D printing to fill the gap and increase the production line of medical devices. Various previously/conventionally fabricated designs have been modified and redesigned to suit the 3D printing requirement to fight against COVID-19. In this perspective, various designs accommodated for the current worldwide outbreak of COVID-19 are discussed and how 3D printing could help the global community against the current and future conditions has been explored.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records

            Summary Background Previous studies on the pneumonia outbreak caused by the 2019 novel coronavirus disease (COVID-19) were based on information from the general population. Limited data are available for pregnant women with COVID-19 pneumonia. This study aimed to evaluate the clinical characteristics of COVID-19 in pregnancy and the intrauterine vertical transmission potential of COVID-19 infection. Methods Clinical records, laboratory results, and chest CT scans were retrospectively reviewed for nine pregnant women with laboratory-confirmed COVID-19 pneumonia (ie, with maternal throat swab samples that were positive for severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) who were admitted to Zhongnan Hospital of Wuhan University, Wuhan, China, from Jan 20 to Jan 31, 2020. Evidence of intrauterine vertical transmission was assessed by testing for the presence of SARS-CoV-2 in amniotic fluid, cord blood, and neonatal throat swab samples. Breastmilk samples were also collected and tested from patients after the first lactation. Findings All nine patients had a caesarean section in their third trimester. Seven patients presented with a fever. Other symptoms, including cough (in four of nine patients), myalgia (in three), sore throat (in two), and malaise (in two), were also observed. Fetal distress was monitored in two cases. Five of nine patients had lymphopenia (<1·0 × 10⁹ cells per L). Three patients had increased aminotransferase concentrations. None of the patients developed severe COVID-19 pneumonia or died, as of Feb 4, 2020. Nine livebirths were recorded. No neonatal asphyxia was observed in newborn babies. All nine livebirths had a 1-min Apgar score of 8–9 and a 5-min Apgar score of 9–10. Amniotic fluid, cord blood, neonatal throat swab, and breastmilk samples from six patients were tested for SARS-CoV-2, and all samples tested negative for the virus. Interpretation The clinical characteristics of COVID-19 pneumonia in pregnant women were similar to those reported for non-pregnant adult patients who developed COVID-19 pneumonia. Findings from this small group of cases suggest that there is currently no evidence for intrauterine infection caused by vertical transmission in women who develop COVID-19 pneumonia in late pregnancy. Funding Hubei Science and Technology Plan, Wuhan University Medical Development Plan.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Additive manufacturing (3D printing): A review of materials, methods, applications and challenges

                Bookmark

                Author and article information

                Journal
                J 3D Print Med
                J 3D Print Med
                3DP
                Journal of 3d Printing in Medicine
                Future Medicine Ltd (London, UK )
                2059-4755
                2059-4763
                05 May 2021
                April 2021
                05 May 2021
                : 10.2217/3dp-2020-0028
                Affiliations
                [1 ] 1School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
                [2 ] 2Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
                Author notes
                [* ]Author for correspondence: majid.warkiani@ 123456uts.edu.au
                [‡]

                Authors contributed equally

                Author information
                https://orcid.org/0000-0002-6419-3361
                https://orcid.org/0000-0002-4184-1944
                Article
                10.2217/3dp-2020-0028
                8098653
                7c0c7186-8f3f-4960-a0c7-db802551eae2
                © 2021 Future Medicine Ltd

                This work is licensed under the Creative Commons Attribution 4.0 License

                History
                : 25 November 2020
                : 13 April 2021
                : 05 May 2021
                Page count
                Pages: 10
                Funding
                Funded by: Australian Research Council;
                Award ID: DP170103704, DP180103003
                Funded by: National Health and Medical Research Council;
                Award ID: APP1143377
                Categories
                Perspective

                3d printing,additive manufacturing,covid-19 outbreak,shortage of personal protective equipment

                Comments

                Comment on this article