16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Deep optical imaging within complex scattering media

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).

          We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imaging intracellular fluorescent proteins at nanometer resolution.

            We introduce a method for optically imaging intracellular proteins at nanometer spatial resolution. Numerous sparse subsets of photoactivatable fluorescent protein molecules were activated, localized (to approximately 2 to 25 nanometers), and then bleached. The aggregate position information from all subsets was then assembled into a superresolution image. We used this method--termed photoactivated localization microscopy--to image specific target proteins in thin sections of lysosomes and mitochondria; in fixed whole cells, we imaged vinculin at focal adhesions, actin within a lamellipodium, and the distribution of the retroviral protein Gag at the plasma membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Far-field optical nanoscopy.

              In 1873, Ernst Abbe discovered what was to become a well-known paradigm: the inability of a lens-based optical microscope to discern details that are closer together than half of the wavelength of light. However, for its most popular imaging mode, fluorescence microscopy, the diffraction barrier is crumbling. Here, I discuss the physical concepts that have pushed fluorescence microscopy to the nanoscale, once the prerogative of electron and scanning probe microscopes. Initial applications indicate that emergent far-field optical nanoscopy will have a strong impact in the life sciences and in other areas benefiting from nanoscale visualization.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nature Reviews Physics
                Nat Rev Phys
                Springer Science and Business Media LLC
                2522-5820
                March 2020
                February 20 2020
                March 2020
                : 2
                : 3
                : 141-158
                Article
                10.1038/s42254-019-0143-2
                7cd25f27-fb3a-48fa-b55f-fc1c517f383d
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article