52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The lipid droplet—a well-connected organelle

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our knowledge of inter-organellar communication has grown exponentially in recent years. This review focuses on the interactions that cytoplasmic lipid droplets have with other organelles. Twenty-five years ago droplets were considered simply particles of coalesced fat. Ten years ago there were hints from proteomics studies that droplets might interact with other structures to share lipids and proteins. Now it is clear that the droplets interact with many if not most cellular structures to maintain cellular homeostasis and to buffer against insults such as starvation. The evidence for this statement, as well as probes to understand the nature and results of droplet interactions, are presented.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          The biophysics and cell biology of lipid droplets.

          Lipid droplets are intracellular organelles that are found in most cells, where they have fundamental roles in metabolism. They function prominently in storing oil-based reserves of metabolic energy and components of membrane lipids. Lipid droplets are the dispersed phase of an oil-in-water emulsion in the aqueous cytosol of cells, and the importance of basic biophysical principles of emulsions for lipid droplet biology is now being appreciated. Because of their unique architecture, with an interface between the dispersed oil phase and the aqueous cytosol, specific mechanisms underlie their formation, growth and shrinkage. Such mechanisms enable cells to use emulsified oil when the demands for metabolic energy or membrane synthesis change. The regulation of the composition of the phospholipid surfactants at the surface of lipid droplets is crucial for lipid droplet homeostasis and protein targeting to their surfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets.

            Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional genomic screen reveals genes involved in lipid-droplet formation and utilization.

              Eukaryotic cells store neutral lipids in cytoplasmic lipid droplets enclosed in a monolayer of phospholipids and associated proteins. These dynamic organelles serve as the principal reservoirs for storing cellular energy and for the building blocks for membrane lipids. Excessive lipid accumulation in cells is a central feature of obesity, diabetes and atherosclerosis, yet remarkably little is known about lipid-droplet cell biology. Here we show, by means of a genome-wide RNA interference (RNAi) screen in Drosophila S2 cells that about 1.5% of all genes function in lipid-droplet formation and regulation. The phenotypes of the gene knockdowns sorted into five distinct phenotypic classes. Genes encoding enzymes of phospholipid biosynthesis proved to be determinants of lipid-droplet size and number, suggesting that the phospholipid composition of the monolayer profoundly affects droplet morphology and lipid utilization. A subset of the Arf1-COPI vesicular transport proteins also regulated droplet morphology and lipid utilization, thereby identifying a previously unrecognized function for this machinery. These phenotypes are conserved in mammalian cells, suggesting that insights from these studies are likely to be central to our understanding of human diseases involving excessive lipid storage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                12 August 2015
                2015
                : 3
                : 49
                Affiliations
                Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
                Author notes

                Edited by: Michael Schrader, University of Exeter, UK

                Reviewed by: Yasuyoshi Sakai, Kyoto University, Japan; D. Brian Foster, The Johns Hopkins University School of Medicine, USA

                *Correspondence: Joel M. Goodman, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9041, USA joel.goodman@ 123456utsouthwestern.edu

                This article was submitted to Mitochondrial Research, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2015.00049
                4533013
                26322308
                7cdf4a31-4783-4667-8627-e16ae54c4737
                Copyright © 2015 Gao and Goodman.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 May 2015
                : 24 July 2015
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 114, Pages: 12, Words: 10458
                Categories
                Physiology
                Review

                lipid droplet,organelle junction,protein trafficking,endoplasmic reticulum,mitochondria

                Comments

                Comment on this article