2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review on Federated Learning and Machine Learning Approaches: Categorization, Application Areas, and Blockchain Technology

      , , ,
      Information
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Federated learning (FL) is a scheme in which several consumers work collectively to unravel machine learning (ML) problems, with a dominant collector synchronizing the procedure. This decision correspondingly enables the training data to be distributed, guaranteeing that the individual device’s data are secluded. The paper systematically reviewed the available literature using the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guiding principle. The study presents a systematic review of appliable ML approaches for FL, reviews the categorization of FL, discusses the FL application areas, presents the relationship between FL and Blockchain Technology (BT), and discusses some existing literature that has used FL and ML approaches. The study also examined applicable machine learning models for federated learning. The inclusion measures were (i) published between 2017 and 2021, (ii) written in English, (iii) published in a peer-reviewed scientific journal, and (iv) Preprint published papers. Unpublished studies, thesis and dissertation studies, (ii) conference papers, (iii) not in English, and (iv) did not use artificial intelligence models and blockchain technology were all removed from the review. In total, 84 eligible papers were finally examined in this study. Finally, in recent years, the amount of research on ML using FL has increased. Accuracy equivalent to standard feature-based techniques has been attained, and ensembles of many algorithms may yield even better results. We discovered that the best results were obtained from the hybrid design of an ML ensemble employing expert features. However, some additional difficulties and issues need to be overcome, such as efficiency, complexity, and smaller datasets. In addition, novel FL applications should be investigated from the standpoint of the datasets and methodologies.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          Federated Machine Learning: Concept and Applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data

            Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Security and Privacy in Decentralized Energy Trading through Multi-signatures, Blockchain and Anonymous Messaging Streams

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                INFOGG
                Information
                Information
                MDPI AG
                2078-2489
                May 2022
                May 23 2022
                : 13
                : 5
                : 263
                Article
                10.3390/info13050263
                7dddbba1-62b1-47b6-b24e-9777c51e21c5
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article