12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nickel-resistant bacteria isolated in human microbiome

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nickel-resistant bacteria have been isolated so far only in contaminated soils and wastewaters polluted with different industrial sources. The aim of our study was to determine if nickel-resistant bacteria could also be isolated from human samples. In this brief communication, we describe how we were able to isolate human bacterial strains that grew without oxygen and in the presence of high concentrations of nickel. The identification was made by phenotypic and genetic techniques. The bacterial sequences have been deposited in the NCBI database repository. Our finding shows that there are several different heavy-metal-tolerant bacteria in humans that should be considered for further studies.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Obesity and the human microbiome.

          Ruth E Ley (2010)
          Obesity was once rare, but the last few decades have seen a rapid expansion of the proportion of obese individuals worldwide. Recent work has shown obesity to be associated with a shift in the representation of the dominant phyla of bacteria in the gut, both in humans and animal models. This review summarizes the latest research into the association between microbial ecology and host adiposity, and the mechanisms by which microbes in the gut may mediate host metabolism in the context of obesity. Studies of the effect of excess body fat on the abundances of different bacteria taxa in the gut generally show alterations in the gastrointestinal microbiota, and changes during weight loss. The gastrointestinal microbiota have been shown to impact insulin resistance, inflammation, and adiposity via interactions with epithelial and endocrine cells. Large-scale alterations of the gut microbiota and its microbiome (gene content) are associated with obesity and are responsive to weight loss. Gut microbes can impact host metabolism via signaling pathways in the gut, with effects on inflammation, insulin resistance, and deposition of energy in fat stores. Restoration of the gut microbiota to a healthy state may ameliorate the conditions associated with obesity and help maintain a healthy weight.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant growth-promoting bacteria that decrease heavy metal toxicity in plants.

            Kluyvera ascorbata SUD165 and a siderophore-overproducing mutant of this bacterium, K. ascorbata SUD165/26, were used to inoculate tomato, canola, and Indian mustard seeds which were then grown in soil for 25-42 days in the presence of either nickel, lead, or zinc. The parameters that were monitored included plant wet and dry weight, protein and chlorophyll content in the plant leaves, and concentration of heavy metal in the plant roots and shoots. As indicated by a decrease in the measured values of these parameters, in all instances, plant growth was inhibited by the presence of the added metal. Both bacterial strains were effective, although not always to a statistically significant extent, at relieving a portion of the growth inhibition caused by the metals. In most cases, the siderophore overproducing mutant K. ascorbata 165/26 exerted a more pronounced effect on plant growth than did the wild-type bacterium K. ascorbata SUD165. The data suggest that the ability of these bacteria to protect plants against the inhibitory effects of high concentrations of nickel, lead, and zinc is related to the bacteria providing the plants with sufficient iron.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones?

              Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus, Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E. faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital-associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host-adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E. faecalis.
                Bookmark

                Author and article information

                Contributors
                Journal
                New Microbes New Infect
                New Microbes New Infect
                New Microbes and New Infections
                Elsevier
                2052-2975
                08 June 2017
                September 2017
                08 June 2017
                : 19
                : 67-70
                Affiliations
                [1) ]St Vincent Health Care Group, UCD, Dublin, Ireland
                [2) ]Central Laboratory, Italian Red Cross, Rome, Italy
                [3) ]Liver Unit, St Camillo Hospital of Rome, Rome, Italy
                Author notes
                [] Corresponding author. E.A. Lusi, St Vincent Health Care Group, UCD, Dublin 4, IrelandSt Vincent Health Care GroupUCDDublin 4Ireland elenaangelalusi@ 123456yahoo.it
                Article
                S2052-2975(17)30055-0
                10.1016/j.nmni.2017.06.001
                5501881
                7edb1f68-2192-4acd-9931-e759b258df7c
                © 2017 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 26 March 2017
                : 22 May 2017
                : 2 June 2017
                Categories
                New Microbes in Humans

                human microbiome,nickel,nickel allergy,nickel-resistant bacteria,overweight

                Comments

                Comment on this article