Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.

          Author Summary

          Identifying gene-by-environment interactions is important for understand the architecture of a complex trait. Discovering gene-by-environment interaction requires the observation of the same phenotype in individuals under different environments. Model organism studies are often conducted under different environments. These studies provide an unprecedented opportunity for researchers to identify the gene-by-environment interactions. A difference in the effect size of a genetic variant between two studies conducted in different environments may suggest the presence of a gene-by-environment interaction. In this paper, we propose to employ a random-effect-based meta-analysis approach to identify gene-by-environment interaction, which assumes different or heterogeneous effect sizes between studies. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional approaches for discovery of gene-by-environment interactions, which treats the gene-by-environment interactions as covariates in the analysis. We provide a intuitive way to visualize the results of the meta-analysis at a locus which allows us to obtain the biological insights of gene-by-environment interactions. We demonstrate our method by searching for gene-by-environment interactions by combining 17 mouse genetic studies totaling 4,965 distinct animals.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis.

          Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes. However, the cellular mechanisms underlying these effects are incompletely understood. The lysosomal degradation pathway, autophagy, is an intracellular recycling system that functions during basal conditions in organelle and protein quality control. During stress, increased levels of autophagy permit cells to adapt to changing nutritional and energy demands through protein catabolism. Moreover, in animal models, autophagy protects against diseases such as cancer, neurodegenerative disorders, infections, inflammatory diseases, ageing and insulin resistance. Here we show that acute exercise induces autophagy in skeletal and cardiac muscle of fed mice. To investigate the role of exercise-mediated autophagy in vivo, we generated mutant mice that show normal levels of basal autophagy but are deficient in stimulus (exercise- or starvation)-induced autophagy. These mice (termed BCL2 AAA mice) contain knock-in mutations in BCL2 phosphorylation sites (Thr69Ala, Ser70Ala and Ser84Ala) that prevent stimulus-induced disruption of the BCL2-beclin-1 complex and autophagy activation. BCL2 AAA mice show decreased endurance and altered glucose metabolism during acute exercise, as well as impaired chronic exercise-mediated protection against high-fat-diet-induced glucose intolerance. Thus, exercise induces autophagy, BCL2 is a crucial regulator of exercise- (and starvation)-induced autophagy in vivo, and autophagy induction may contribute to the beneficial metabolic effects of exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice.

            Obesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics approach, we measured obesity traits, global gene expression, and gut microbiota composition in response to a high-fat/high-sucrose (HF/HS) diet of more than 100 inbred strains of mice. Here we show that HF/HS feeding promotes robust, strain-specific changes in obesity that are not accounted for by food intake and provide evidence for a genetically determined set point for obesity. GWAS analysis identified 11 genome-wide significant loci associated with obesity traits, several of which overlap with loci identified in human studies. We also show strong relationships between genotype and gut microbiota plasticity during HF/HS feeding and identify gut microbial phylotypes associated with obesity. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide genetic association of complex traits in heterogeneous stock mice.

              Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map 843 QTLs with an average 95% confidence interval of 2.8 Mb. The QTLs contribute to variation in 97 traits, including models of human disease (asthma, type 2 diabetes mellitus, obesity and anxiety) as well as immunological, biochemical and hematological phenotypes. The genetic architecture of almost all phenotypes was complex, with many loci each contributing a small proportion to the total variance. Our data set, freely available at http://gscan.well.ox.ac.uk, provides an entry point to the functional characterization of genes involved in many complex traits.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2014
                January 2014
                9 January 2014
                : 10
                : 1
                : e1004022
                Affiliations
                [1 ]Department of Computer Science, University of California, Los Angeles, Los Angeles, California, United States of America
                [2 ]Division of Genetics, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                [3 ]Partners HealthCare Center for Personalized Genetic Medicine, Boston, Massachusetts, United States of America
                [4 ]Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
                [5 ]Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
                [6 ]Department of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
                [7 ]Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
                Georgia Institute of Technology, United States of America
                Author notes

                ¶ AJL and EE also contributed equally to this work.

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EYK BH NF JWJ DS RCD AJL EE. Performed the experiments: EYK BH NF JWJ DS RCD. Analyzed the data: EYK BH NF JWJ DS RCD AJL EE. Contributed reagents/materials/analysis tools: EYK BH NF JWJ DS RCD AJL EE. Wrote the paper: EYK BH NF DS RCD AJL EE.

                Article
                PGENETICS-D-13-02088
                10.1371/journal.pgen.1004022
                3886926
                24415945
                7f8ffee7-405d-4352-b071-899a579acf28
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 August 2013
                : 28 October 2013
                Page count
                Pages: 16
                Funding
                This research was supported by National Science Foundation grants 0513612, 0731455, 0729049, 0916676, 1065276, and 1320589, and National Institutes of Health grants K25-HL080079, U01- DA024417, P01-HL30568, PO1-HL28481, R01-GM083198, R01-MH101782 and R01-ES022282. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Animal Genetics
                Genome-Wide Association Studies

                Genetics
                Genetics

                Comments

                Comment on this article