Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An orally effective dihydropyrimidone (DHPM) analogue induces apoptosis-like cell death in clinical isolates of Leishmania donovani overexpressing pteridine reductase 1

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. The enzyme pteridine reductase 1 (PTR1) of L. donovani acts as a metabolic bypass for drugs targeting dihydrofolate reductase (DHFR); therefore, for successful antifolate chemotherapy to be developed against Leishmania, it must target both enzyme activities. Leishmania cells overexpressing PTR1 tagged at the N-terminal with green fluorescent protein were established to screen for proprietary dihydropyrimidone (DHPM) derivatives of DHFR specificity synthesised in our laboratory. A cell-permeable molecule with impressive antileishmanial in vitro and in vivo oral activity was identified. Structure activity relationship based on homology model drawn on our recombinant enzyme established the highly selective inhibition of the enzyme by this analogue. It was seen that the leishmanicidal effect of this analogue is triggered by programmed cell death mediated by the loss of plasma membrane integrity as detected by binding of annexin V and propidium iodide (PI), loss of mitochondrial membrane potential culminating in cell cycle arrest at the sub-G0/G1 phase and oligonucleosomal DNA fragmentation. Hence, this DHPM analogue [(4-fluoro-phenyl)-6-methyl-2-thioxo-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylic acid ethyl ester] is a potent antileishmanial agent that merits further pharmacological investigation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Probing Spindle Assembly Mechanisms with Monastrol, a Small Molecule Inhibitor of the Mitotic Kinesin, Eg5

          Monastrol, a cell-permeable small molecule inhibitor of the mitotic kinesin, Eg5, arrests cells in mitosis with monoastral spindles. Here, we use monastrol to probe mitotic mechanisms. We find that monastrol does not inhibit progression through S and G2 phases of the cell cycle or centrosome duplication. The mitotic arrest due to monastrol is also rapidly reversible. Chromosomes in monastrol-treated cells frequently have both sister kinetochores attached to microtubules extending to the center of the monoaster (syntelic orientation). Mitotic arrest–deficient protein 2 (Mad2) localizes to a subset of kinetochores, suggesting the activation of the spindle assembly checkpoint in these cells. Mad2 localizes to some kinetochores that have attached microtubules in monastrol-treated cells, indicating that kinetochore microtubule attachment alone may not satisfy the spindle assembly checkpoint. Monastrol also inhibits bipolar spindle formation in Xenopus egg extracts. However, it does not prevent the targeting of Eg5 to the monoastral spindles that form. Imaging bipolar spindles disassembling in the presence of monastrol allowed direct observations of outward directed forces in the spindle, orthogonal to the pole-to-pole axis. Monastrol is thus a useful tool to study mitotic processes, detection and correction of chromosome malorientation, and contributions of Eg5 to spindle assembly and maintenance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis).

            The term cell necrobiology is introduced to comprise the life processes associated with morphological, biochemical, and molecular changes which predispose, precede, and accompany cell death, as well as the consequences and tissue response to cell death. Two alternative modes of cell death can be distinguished, apoptosis and accidental cell death, generally defined as necrosis. The wide interest in necrobiology in many disciplines stems from the realization that apoptosis, whether it occurs physiologically or as a manifestation of a pathological state, is an active mode of cell death and a subject of complex regulatory processes. A possibility exists, therefore, to interact with the regulatory machinery and thereby modulate the cell's propensity to die in response to intrinsic or exogenous signals. Flow cytometry appears to be the methodology of choice to study various aspects of necrobiology. It offers all the advantages of rapid, multiparameter analysis of large populations of individual cells to investigate the biological processes associated with cell death. Numerous methods have been developed to identify apoptotic and necrotic cells and are widely used in various disciplines, in particular in oncology and immunology. The methods based on changes in cell morphology, plasma membrane structure and transport function, function of cell organelles, DNA stability to denaturation, and endonucleolytic DNA degradation are reviewed and their applicability in the research laboratory and in the clinical setting is discussed. Improper use of flow cytometry in analysis of cell death and in data interpretation also is discussed. The most severe errors are due to i) misclassification of nuclear fragments and individual apoptotic bodies as single apoptotic cells, ii) assumption that the apoptotic index represents the rate of cell death, and iii) failure to confirm by microscopy that the cells classified by flow cytometry as apoptotic or necrotic do indeed show morphology consistent with this classification. It is expected that flow cytometry will be the dominant methodology for necrobiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biologically active dihydropyrimidones of the Biginelli-type--a literature survey.

              In 1893, the synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) via three-component condensation reaction of an aromatic aldehyde, urea and ethyl acetoacetate was reported for the first time by P. Biginelli. In the past decades, such Biginelli-type dihydropyrimidones have received a considerable amount of attention due to the interesting pharmacological properties associated with this heterocyclic scaffold. In this review, we highlight recent developments in this area, with a focus on the DHPMs recently developed as calcium channel modulators, alpha(1a) adrenoceptor-selective antagonists and compounds that target the mitotic machinery.
                Bookmark

                Author and article information

                Contributors
                +91-552-9415002065 , +91-522-22623405 , neeloo888@yahoo.com
                Journal
                Parasitol Res
                Parasitology Research
                Springer-Verlag (Berlin/Heidelberg )
                0932-0113
                1432-1955
                21 July 2009
                October 2009
                : 105
                : 5
                : 1317-1325
                Affiliations
                [1 ]Drug Target Discovery & Development Division, Central Drug Research Institute, Lucknow, 226001 India
                [2 ]Division of Parasitology, Central Drug Research Institute, Lucknow, 226001 India
                [3 ]Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow, 226001 India
                [4 ]Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, 226001 India
                [5 ]Department of Infectious Disease and Immunology, Indian Institute of Chemical Biology, Kolkata, 700032 India
                Article
                1557
                10.1007/s00436-009-1557-z
                2745541
                19621245
                804cb20e-13c5-4d5b-b9c7-08835c2c8c96
                © The Author(s) 2009
                History
                : 22 May 2009
                : 30 June 2009
                Categories
                Original Paper
                Custom metadata
                © Springer-Verlag 2009

                Parasitology
                Parasitology

                Comments

                Comment on this article