51
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori ( Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila.

          Proteins with expanded polyglutamine repeats cause Huntington's disease and other neurodegenerative diseases. Transcriptional dysregulation and loss of function of transcriptional co-activator proteins have been implicated in the pathogenesis of these diseases. Huntington's disease is caused by expansion of a repeated sequence of the amino acid glutamine in the abnormal protein huntingtin (Htt). Here we show that the polyglutamine-containing domain of Htt, Htt exon 1 protein (Httex1p), directly binds the acetyltransferase domains of two distinct proteins: CREB-binding protein (CBP) and p300/CBP-associated factor (P/CAF). In cell-free assays, Httex1p also inhibits the acetyltransferase activity of at least three enzymes: p300, P/CAF and CBP. Expression of Httex1p in cultured cells reduces the level of the acetylated histones H3 and H4, and this reduction can be reversed by administering inhibitors of histone deacetylase (HDAC). In vivo, HDAC inhibitors arrest ongoing progressive neuronal degeneration induced by polyglutamine repeat expansion, and they reduce lethality in two Drosophila models of polyglutamine disease. These findings raise the possibility that therapy with HDAC inhibitors may slow or prevent the progressive neurodegeneration seen in Huntington's disease and other polyglutamine-repeat diseases, even after the onset of symptoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs

            The concept of orthology provides a foundation for formulating hypotheses on gene and genome evolution, and thus forms the cornerstone of comparative genomics, phylogenomics and metagenomics. We present the update of OrthoDB—the hierarchical catalog of orthologs (http://www.orthodb.org). From its conception, OrthoDB promoted delineation of orthologs at varying resolution by explicitly referring to the hierarchy of species radiations, now also adopted by other resources. The current release provides comprehensive coverage of animals and fungi representing 252 eukaryotic species, and is now extended to prokaryotes with the inclusion of 1115 bacteria. Functional annotations of orthologous groups are provided through mapping to InterPro, GO, OMIM and model organism phenotypes, with cross-references to major resources including UniProt, NCBI and FlyBase. Uniquely, OrthoDB provides computed evolutionary traits of orthologs, such as gene duplicability and loss profiles, divergence rates, sibling groups, and now extended with exon–intron architectures, syntenic orthologs and parent–child trees. The interactive web interface allows navigation along the species phylogenies, complex queries with various identifiers, annotation keywords and phrases, as well as with gene copy-number profiles and sequence homology searches. With the explosive growth of available data, OrthoDB also provides mapping of newly sequenced genomes and transcriptomes to the current orthologous groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genome sequence of silkworm, Bombyx mori.

              We performed threefold shotgun sequencing of the silkworm (Bombyx mori) genome to obtain a draft sequence and establish a basic resource for comprehensive genome analysis. By using the newly developed RAMEN assembler, the sequence data derived from whole-genome shotgun (WGS) sequencing were assembled into 49,345 scaffolds that span a total length of 514 Mb including gaps and 387 Mb without gaps. Because the genome size of the silkworm is estimated to be 530 Mb, almost 97% of the genome has been organized in scaffolds, of which 75% has been sequenced. By carrying out a BLAST search for 50 characteristic Bombyx genes and 11,202 non-redundant expressed sequence tags (ESTs) in a Bombyx EST database against the WGS sequence data, we evaluated the validity of the sequence for elucidating the majority of silkworm genes. Analysis of the WGS data revealed that the silkworm genome contains many repetitive sequences with an average length of <500 bp. These repetitive sequences appear to have been derived from truncated transposons, which are interspersed at 2.5- to 3-kb intervals throughout the genome. This pattern suggests that silkworm may have an active mechanism that promotes removal of transposons from the genome. We also found evidence for insertions of mitochondrial DNA fragments at 9 sites. A search for Bombyx orthologs to Drosophila genes controlling sex determination in the WGS data revealed 11 Bombyx genes and suggested that the sex-determining systems differ profoundly between the two species.
                Bookmark

                Author and article information

                Contributors
                Role: External Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                09 October 2014
                October 2014
                : 15
                : 10
                : 18102-18116
                Affiliations
                [1 ]Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; E-Mails: zhangzan125@ 123456gmail.com (Z.Z.); tengxiaolu177546@ 123456gmail.com (X.T.)
                [2 ]College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling 712100, Shaanxi, China; E-Mail: cmhwh1@ 123456hotmail.com
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: lifei@ 123456njau.edu.cn ; Tel.: +86-25-8439-9025; Fax: +86-25-8439-9920.
                Article
                ijms-15-18102
                10.3390/ijms151018102
                4227205
                25302617
                80d5e1df-fefc-4b7b-a749-1251b95bf788
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 June 2014
                : 24 August 2014
                : 19 September 2014
                Categories
                Article

                Molecular biology
                bombyx mori,human diseases model,diabetes mellitus,insr,dsrna
                Molecular biology
                bombyx mori, human diseases model, diabetes mellitus, insr, dsrna

                Comments

                Comment on this article