26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beneficial Effect of Bidens pilosa on Body Weight Gain, Food Conversion Ratio, Gut Bacteria and Coccidiosis in Chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the interests of food safety and public health, plants and their compounds are now re-emerging as an alternative approach to treat gastrointestinal diseases in chickens. Here, we studied the impact of the edible medicinal plant, B. pilosa, on growth performance, gut bacteria and coccidiosis in chickens. First, we found that B. pilosa significantly elevated body weight gain and lowered feed conversion ratio in chickens. Next, we showed that B. pilosa reduced cecal damage as evidenced by increased hemorrhage, villus destruction and decreased villus-to-crypt ratio in chicken ceca. We also performed pyrosequencing of the PCR ampilcons based on the 16S rRNA genes of gut bacteria in chickens. Metagenomic analysis indicated that the chicken gut bacteria belonged to 6 phyla, 6 classes, 6 orders, 9 families, and 8 genera. More importantly, we found that B. pilosa affected the composition of bacteria. This change in bacteria composition was correlated with body weight gain, feed conversion ratio and gut pathology in chickens. Collectively, this work suggests that B. pilosa has beneficial effects on growth performance and protozoan infection in chickens probably via modulation of gut bacteria.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome

          Chickens are major source of food and protein worldwide. Feed conversion and the health of chickens relies on the largely unexplored complex microbial community that inhabits the chicken gut, including the ceca. We have carried out deep microbial community profiling of the microbiota in twenty cecal samples via 16S rRNA gene sequences and an in-depth metagenomics analysis of a single cecal microbiota. We recovered 699 phylotypes, over half of which appear to represent previously unknown species. We obtained 648,251 environmental gene tags (EGTs), the majority of which represent new species. These were binned into over two-dozen draft genomes, which included Campylobacter jejuni and Helicobacter pullorum. We found numerous polysaccharide- and oligosaccharide-degrading enzymes encoding within the metagenome, some of which appeared to be part of polysaccharide utilization systems with genetic evidence for the co-ordination of polysaccharide degradation with sugar transport and utilization. The cecal metagenome encodes several fermentation pathways leading to the production of short-chain fatty acids, including some with novel features. We found a dozen uptake hydrogenases encoded in the metagenome and speculate that these provide major hydrogen sinks within this microbial community and might explain the high abundance of several genera within this microbiome, including Campylobacter, Helicobacter and Megamonas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials.

            Three broiler feeding trials were investigated in order to identify gut bacteria consistently linked with improvements in bird performance as measured by feed efficiency. Trials were done in various geographic locations and varied in diet composition, broiler breed, and bird age. Gut microbial communities were investigated using microbial profiling. Eight common performance-linked operational taxonomic units (OTUs) were identified within both the ilea (180, 492, and 564-566) and ceca (140-142, 218-220, 284-286, 312, and 482) across trials. OTU 564-566 was associated with lower performance, while OTUs 140-142, 482, and 492 were associated with improved performance. Targeted cloning and sequencing of these eight OTUs revealed that they represented 26 bacterial species or phylotypes which clustered phylogenetically into seven groups related to Lactobacillus spp., Ruminococcaceae, Clostridiales, Gammaproteobacteria, Bacteroidales, Clostridiales/Lachnospiraceae, and unclassified bacteria/clostridia. Where bacteria were identifiable to the phylum level, they belonged predominantly to the Firmicutes, with Bacteroidetes and Proteobacteria also identified. Some of the potential performance-related phylotypes showed high sequence identity with classified bacteria (Lactobacillus salivarius, Lactobacillus aviarius, Lactobacillus crispatus, Faecalibacterium prausnitzii, Escherichia coli, Gallibacterium anatis, Clostridium lactatifermentans, Ruminococcus torques, Bacteroides vulgatus, and Alistipes finegoldii). The 16S rRNA gene sequence information generated will allow quantitative assays to be developed which will enable elucidations of which of these phylotypes are truly performance related. This information could be used to monitor strategies to improve feed efficiency and feed formulation for optimal gut health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chasing the golden egg: vaccination against poultry coccidiosis.

              Eimeria species, of the Phylum Apicomplexa, cause the disease coccidiosis in poultry, resulting in severe economic losses every year. Transmission of the disease is via the faecal-oral route, and is facilitated by intensive rearing conditions in the poultry industry. Additionally, Eimeria has developed drug resistance against most anticoccidials used today, which, along with the public demand for chemical free meat, has lead to the requirement for an effective vaccine strategy. This review focuses on the history and current status of anticoccidial vaccines, and our work in developing the transmission-blocking vaccine, CoxAbic (Netanya, Israel). The vaccine is composed of affinity-purified antigens from the wall-forming bodies of macrogametocytes of Eimeria maxima, which are proteolytically processed and cross-linked via tyrosine residues to form the environmentally resistant oocyst wall. The vaccine is delivered via maternal immunization, where vaccination of laying hens leads to protection of broiler offspring. It has been extensively tested for efficacy and safety in field trials conducted in five countries and involving over 60 million offspring chickens from immunized hens and is currently the only subunit vaccine against any protozoan parasite to reach the marketplace.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                14 January 2016
                2016
                : 11
                : 1
                : e0146141
                Affiliations
                [1 ]Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan
                [2 ]Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
                [3 ]Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
                [4 ]Department of Microbiology, Soochow University, Taipei, Taiwan
                [5 ]Department of Aquaculture, National Ocean University, Keelung Chung, Taiwan
                [6 ]Institute of Pharmacology, Yang-Ming University, Taipei, Taiwan
                [7 ]Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
                University of New England, AUSTRALIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: WCY CLTC. Performed the experiments: CYC CHK TFK. Analyzed the data: CHK CWY CLTC. Contributed reagents/materials/analysis tools: CLTC. Wrote the paper: WCY.

                Article
                PONE-D-15-42414
                10.1371/journal.pone.0146141
                4713076
                26765226
                821c8dcd-3ff5-4149-a0d8-d1517aca979b
                © 2016 Chang et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 September 2015
                : 13 December 2015
                Page count
                Figures: 7, Tables: 2, Pages: 15
                Funding
                This work was supported by the Innovative Translational Agriculture Research (ITAR) grant of Academia Sinica, Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article