5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phytochemical composition and variability in Quercus ilex acorn morphotypes as determined by NIRS and MS-based approaches

      , , ,
      Food Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.

          MetaboAnalyst (http://www.metaboanalyst.ca) is a comprehensive Web application for metabolomic data analysis and interpretation. MetaboAnalyst handles most of the common metabolomic data types from most kinds of metabolomics platforms (MS and NMR) for most kinds of metabolomics experiments (targeted, untargeted, quantitative). In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst also supports a number of data analysis and data visualization tasks using a range of univariate, multivariate methods such as PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), heatmap clustering and machine learning methods. MetaboAnalyst also offers a variety of tools for metabolomic data interpretation including MSEA (metabolite set enrichment analysis), MetPA (metabolite pathway analysis), and biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. This unit provides an overview of the main functional modules and the general workflow of the latest version of MetaboAnalyst (MetaboAnalyst 3.0), followed by eight detailed protocols. © 2016 by John Wiley & Sons, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical composition of selected edible nut seeds.

            Commercially important edible nut seeds were analyzed for chemical composition and moisture sorption. Moisture (1.47-9.51%), protein (7.50-21.56%), lipid (42.88-66.71%), ash (1.16-3.28%), total soluble sugars (0.55-3.96%), tannins (0.01-0.88%), and phytate (0.15-0.35%) contents varied considerably. Regardless of the seed type, lipids were mainly composed of mono- and polyunsaturated fatty acids (>75% of the total lipids). Fatty acid composition analysis indicated that oleic acid (C18:1) was the main constituent of monounsaturated lipids in all seed samples. With the exception of macadamia, linoleic acid (C18:2) was the major polyunsaturated fatty acid. In the case of walnuts, in addition to linoleic acid (59.79%) linolenic acid (C18:3) also significantly contributed toward the total polyunsaturated lipids. Amino acid composition analyses indicated lysine (Brazil nut, cashew nut, hazelnut, pine nut, and walnut), sulfur amino acids methionine and cysteine (almond), tryptophan (macadamia, pecan), and threonine (peanut) to be the first limiting amino acid as compared to human (2-5 year old) amino acid requirements. The amino acid composition of the seeds was characterized by the dominance of hydrophobic (range = 37.16-44.54%) and acidic (27.95-33.17%) amino acids followed by basic (16.16-21.17%) and hydrophilic (8.48-11.74%) amino acids. Trypsin inhibitory activity, hemagglutinating activity, and proteolytic activity were not detected in the nut seed samples analyzed. Sorption isotherms (Aw range = 0.08-0.97) indicated a narrow range for monolayer water content (11-29 mg/g of dry matter). No visible mold growth was evident on any of the samples stored at Aw < 0.53 and 25 degrees C for 6 months.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms.

              Here, we describe a method for the combined metabolomic, proteomic, transcriptomic and genomic analysis from one single sample as a major step for multilevel data integration strategies in systems biology. While extracting proteins and DNA, this protocol also allows the separation of metabolites into polar and lipid fractions, as well as RNA fractionation into long and small RNAs, thus allowing a broad range of transcriptional studies. The isolated biomolecules are suitable for analysis with different methods that range from electrophoresis and blotting to state-of-the-art procedures based on mass spectrometry (accurate metabolite profiling, shot-gun proteomics) or massive sequencing technologies (transcript analysis). The low amount of starting tissue, its cost-efficiency compared with the utilization of commercial kits, and its performance over a wide range of plant, microbial, and algal species such as Chlamydomonas, Arabidopsis, Populus, or Pinus, makes this method a universal alternative for multiple molecular isolation from plant tissues. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
                Bookmark

                Author and article information

                Journal
                Food Chemistry
                Food Chemistry
                Elsevier BV
                03088146
                February 2021
                February 2021
                : 338
                : 127803
                Article
                10.1016/j.foodchem.2020.127803
                32822899
                852d1f74-6a4f-43c7-968b-06addccbd7ad
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article