12
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Highly accurate model for prediction of lung nodule malignancy with CT scans

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep learning convolutional neural networks (CNN). For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort. All nodules were identified and classified by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of ~0.99. This is commensurate with the analysis of the dataset by experienced radiologists. Our approach, NoduleX, provides an effective framework for highly accurate nodule malignancy prediction with the model trained on a large patient population. Our results are replicable with software available at http://bioinformatics.astate.edu/NoduleX.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy

          Background CADe and CADx systems for the detection and diagnosis of lung cancer have been important areas of research in recent decades. However, these areas are being worked on separately. CADe systems do not present the radiological characteristics of tumors, and CADx systems do not detect nodules and do not have good levels of automation. As a result, these systems are not yet widely used in clinical settings. Methods The purpose of this article is to develop a new system for detection and diagnosis of pulmonary nodules on CT images, grouping them into a single system for the identification and characterization of the nodules to improve the level of automation. The article also presents as contributions: the use of Watershed and Histogram of oriented Gradients (HOG) techniques for distinguishing the possible nodules from other structures and feature extraction for pulmonary nodules, respectively. For the diagnosis, it is based on the likelihood of malignancy allowing more aid in the decision making by the radiologists. A rule-based classifier and Support Vector Machine (SVM) have been used to eliminate false positives. Results The database used in this research consisted of 420 cases obtained randomly from LIDC-IDRI. The segmentation method achieved an accuracy of 97 % and the detection system showed a sensitivity of 94.4 % with 7.04 false positives per case. Different types of nodules (isolated, juxtapleural, juxtavascular and ground-glass) with diameters between 3 mm and 30 mm have been detected. For the diagnosis of malignancy our system presented ROC curves with areas of: 0.91 for nodules highly unlikely of being malignant, 0.80 for nodules moderately unlikely of being malignant, 0.72 for nodules with indeterminate malignancy, 0.67 for nodules moderately suspicious of being malignant and 0.83 for nodules highly suspicious of being malignant. Conclusions From our preliminary results, we believe that our system is promising for clinical applications assisting radiologists in the detection and diagnosis of lung cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma

            Lung cancer is the most common cause of cancer-related deaths in the USA. It can be detected and diagnosed using computed tomography images. For an automated classifier, identifying predictive features from medical images is a key concern. Deep feature extraction using pretrained convolutional neural networks (CNNs) has recently been successfully applied in some image domains. Here, we applied a pretrained CNN to extract deep features from 40 computed tomography images, with contrast, of non-small cell adenocarcinoma lung cancer, and combined deep features with traditional image features and trained classifiers to predict short- and long-term survivors. We experimented with several pretrained CNNs and several feature selection strategies. The best previously reported accuracy when using traditional quantitative features was 77.5% (area under the curve [AUC], 0.712), which was achieved by a decision tree classifier. The best reported accuracy from transfer learning and deep features was 77.5% (AUC, 0.713) using a decision tree classifier. When extracted deep neural network features were combined with traditional quantitative features, we obtained an accuracy of 90% (AUC, 0.935) with the 5 best post-rectified linear unit features extracted from a vgg-f pretrained CNN and the 5 best traditional features. The best results were achieved with the symmetric uncertainty feature ranking algorithm followed by a random forests classifier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules.

              Purpose: We propose a systematic methodology to quantify incidentally identified pulmonary nodules based on observed radiological traits (semantics) quantified on a point scale and a machine-learning method using these data to predict cancer status.Experimental Design:We investigated 172 patients who had low-dose CT images, with 102 and 70 patients grouped into training and validation cohorts, respectively. On the images, 24 radiological traits were systematically scored and a linear classifier was built to relate the traits to malignant status. The model was formed both with and without size descriptors to remove bias due to nodule size. The multivariate pairs formed on the training set were tested on an independent validation data set to evaluate their performance.Results:The best 4-feature set that included a size measurement (set 1), was short axis, contour, concavity, and texture, which had an area under the receiver operator characteristic curve (AUROC) of 0.88 (accuracy = 81%, sensitivity = 76.2%, specificity = 91.7%). If size measures were excluded, the four best features (set 2) were location, fissure attachment, lobulation, and spiculation, which had an AUROC of 0.83 (accuracy = 73.2%, sensitivity = 73.8%, specificity = 81.7%) in predicting malignancy in primary nodules. The validation test AUROC was 0.8 (accuracy = 74.3%, sensitivity = 66.7%, specificity = 75.6%) and 0.74 (accuracy = 71.4%, sensitivity = 61.9%, specificity = 75.5%) for sets 1 and 2, respectively.Conclusions:Radiological image traits are useful in predicting malignancy in lung nodules. These semantic traits can be used in combination with size-based measures to enhance prediction accuracy and reduce false-positives.Clin Cancer Res; 23(6); 1442-9. ©2016 AACR.
                Bookmark

                Author and article information

                Journal
                05 February 2018
                Article
                1802.01756
                860cb7d1-765f-4b23-8f57-26f21269ff89

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.CV q-bio.QM stat.ML

                Comments

                Comment on this article