58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide.

          Palmitoylethanolamide (PEA), the naturally occurring amide of palmitic acid and ethanolamine, reduces pain and inflammation through an as-yet-uncharacterized mechanism. Here, we identify the nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-alpha) as the molecular target responsible for the anti-inflammatory properties of PEA. PEA selectively activates PPAR-alpha in vitro with an EC(50) value of 3.1 +/- 0.4 microM and induces the expression of PPAR-alpha mRNA when applied topically to mouse skin. In two animal models, carrageenan-induced paw edema and phorbol ester-induced ear edema, PEA attenuates inflammation in wild-type mice but has no effect in mice deficient in PPAR-alpha. The natural PPAR-alpha agonist oleoylethanolamide (OEA) and the synthetic PPAR-alpha agonists GW7647 and Wy-14643 mimic these effects in a PPAR-alpha-dependent manner. These findings indicate that PPAR-alpha mediates the anti-inflammatory effects of PEA and suggest that this fatty-acid ethanolamide may serve, like its analog OEA, as an endogenous ligand of PPAR-alpha.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Diversity of the Human Skin Microbiome Early in Life

            Within days after birth, rapid surface colonization of infant skin coincides with significant functional changes. Gradual maturation of skin function, structure, and composition continues throughout the first years of life. Recent reports have revealed topographical and temporal variations in the adult skin microbiome. Here we address the question of how the human skin microbiome develops early in life. We show that the composition of cutaneous microbial communities evolves over the first year of life, showing increasing diversity with age. Although early colonization is dominated by Staphylococci, their significant decline contributes to increased population evenness by the end of the first year. Similar to what has been shown in adults, the composition of infant skin microflora appears to be site specific. In contrast to adults, we find that Firmicutes predominate on infant skin. Timely and proper establishment of healthy skin microbiome during this early period might have a pivotal role in denying access to potentially infectious microbes and could affect microbiome composition and stability extending into adulthood. Bacterial communities contribute to the establishment of cutaneous homeostasis and modulate inflammatory responses. Early microbial colonization is therefore expected to critically affect the development of the skin immune function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice.

              Recent data suggest that the gut microbiota plays a significant role in fat accumulation. However, it is not clear whether gut microbiota is involved in the pathophysiology of type 2 diabetes. To assess this issue, we modulated gut microbiota via antibiotics administration in two different mouse models with insulin resistance. Results from dose-determination studies showed that a combination of norfloxacin and ampicillin, at a dose of 1 g/L, maximally suppressed the numbers of cecal aerobic and anaerobic bacteria in ob/ob mice. After a 2-wk intervention with the antibiotic combination, both ob/ob and diet-induced obese and insulin-resistant mice showed a significant improvement in fasting glycemia and oral glucose tolerance. The improved glycemic control was independent of food intake or adiposity because pair-fed ob/ob mice were as glucose intolerant as the control ob/ob mice. Reduced liver triglycerides and increased liver glycogen correlated with improved glucose tolerance in the treated mice. Concomitant reduction of plasma lipopolysaccharides and increase of adiponectin further supported the antidiabetic effects of the antibiotic treatment in ob/ob mice. In summary, modulation of gut microbiota ameliorated glucose tolerance of mice by altering the expression of hepatic and intestinal genes involved in inflammation and metabolism, and by changing the hormonal, inflammatory, and metabolic status of the host.
                Bookmark

                Author and article information

                Journal
                J. Clin. Invest.
                The Journal of clinical investigation
                1558-8238
                0021-9738
                Aug 2014
                : 124
                : 8
                Article
                72517
                10.1172/JCI72517
                24960158
                862fa35d-623c-4cf2-bb73-35f4de869251
                History

                Comments

                Comment on this article