40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Investigation of modifier genes within copy number variations in Rett syndrome

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). We investigated whether Copy Number Variants (CNVs) may modulate the phenotype by comparison of array-CGH data from two discordant pairs of sisters and four additional discordant pairs of unrelated girls matched by mutation type. We also searched for potential MeCP2 targets within CNVs by ChIP-chip analysis. We did not identify one major common gene/region, suggesting that modifiers may be complex and variable between cases. However, we detected CNVs correlating with disease severity that contain candidate modifiers. CROCC (1p36.13) is a potential MeCP2 target in which a duplication in a Z-RTT and a deletion in a classic patient were observed. CROCC encodes a structural component of ciliary motility that is required for correct brain development. CFHR1 and CFHR3, on 1q31.3, may be involved in the regulation of complement during synapse elimination and were found to be deleted in a Z-RTT but duplicated in two classic patients. The duplication of 10q11.22, present in two Z-RTT patients, includes GPRIN2, a regulator of neurite outgrowth and PPYR1, involved in energy homeostasis. Functional analyses are necessary to confirm candidates and to define targets for future therapies.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in copy number in the human genome.

          Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large recurrent microdeletions associated with schizophrenia.

            Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ciliopathies: an emerging class of human genetic disorders.

              Cilia and flagella are ancient, evolutionarily conserved organelles that project from cell surfaces to perform diverse biological roles, including whole-cell locomotion; movement of fluid; chemo-, mechano-, and photosensation; and sexual reproduction. Consistent with their stringent evolutionary conservation, defects in cilia are associated with a range of human diseases, such as primary ciliary dyskinesia, hydrocephalus, polycystic liver and kidney disease, and some forms of retinal degeneration. Recent evidence indicates that ciliary defects can lead to a broader set of developmental and adult phenotypes, with mutations in ciliary proteins now associated with nephronophthisis, Bardet-Biedl syndrome, Alstrom syndrome, and Meckel-Gruber syndrome. The molecular data linking seemingly unrelated clinical entities are beginning to highlight a common theme, where defects in ciliary structure and function can lead to a predictable phenotypic pattern that has potentially predictive and therapeutic value.
                Bookmark

                Author and article information

                Journal
                9808008
                20962
                J Hum Genet
                J. Hum. Genet.
                Journal of human genetics
                1434-5161
                1435-232X
                3 May 2011
                19 May 2011
                July 2011
                01 January 2012
                : 56
                : 7
                : 508-515
                Affiliations
                [1 ] Medical Genetics Section, Biotechnology Department, University of Siena, Italy
                [2 ] Medical Microbiology and Immunology, Genome Center, School of Medicine, University of California, Davis, CA, USA
                [3 ] Child Neuropsychiatry, Versilia Hospital, Viareggio, Italy
                [4 ] Infantile Neuropsychiatry, Siena General Hospital, Italy
                Author notes
                Corresponding author: Alessandra Renieri M.D., Ph.D. Full Professor Medical Genetics University of Siena Policlinico “S. Maria alle Scotte” viale Bracci 2 - 53100 Siena, Italy Phone: 39 0577 233303 FAX: 39 0577 233325 renieri@ 123456unisi.it
                [*]

                These authors contributed equally to the work

                Article
                UKMS35322
                10.1038/jhg.2011.50
                3145144
                21593744
                86c9f58e-ef38-42c8-9f0a-8e2434ac99ed

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: Telethon :
                Award ID: GTB07001 || TI_
                Funded by: Telethon :
                Award ID: GTB07001 || TI_
                Categories
                Article

                Genetics
                copy number variants,modifier genes,rett syndrome
                Genetics
                copy number variants, modifier genes, rett syndrome

                Comments

                Comment on this article