9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Amyloid β-peptides interfere with mitochondrial preprotein import competence by a coaggregation process

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aggregation-prone amyloid β-peptides occurring in Alzheimer’s disease (AD) inhibit the import of nuclear-encoded mitochondrial precursor proteins. The observation of insoluble coaggregates between preproteins and Aβ peptides provides a biochemical explanation for mitochondrial dysfunction typically observed in AD-affected cells.

          Abstract

          Aβ peptides play a central role in the etiology of Alzheimer disease (AD) by exerting cellular toxicity correlated with aggregate formation. Experimental evidence has shown intraneuronal accumulation of Aβ peptides and interference with mitochondrial functions. Nevertheless, the relevance of intracellular Aβ peptides in the pathophysiology of AD is controversial. Here we found that the two major species of Aβ peptides, in particular Aβ42, exhibited a strong inhibitory effect on the preprotein import reactions essential for mitochondrial biogenesis. However, Aβ peptides interacted only weakly with mitochondria and did not affect the inner membrane potential or the structure of the preprotein translocase complexes. Aβ peptides significantly decreased the import competence of mitochondrial precursor proteins via an extramitochondrial coaggregation mechanism. Coaggregation and import inhibition were significantly stronger for the longer peptide Aβ42, correlating with its importance in AD pathology. Our results demonstrate that direct interference of aggregation-prone Aβ peptides with mitochondrial protein biogenesis represents a crucial aspect of the pathobiochemical mechanisms contributing to cellular damage in AD.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives.

          Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains that gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts that biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo.

            The mechanism by which an elongated polyglutamine sequence causes neurodegeneration in Huntington's disease (HD) is unknown. In this study, we show that the proteolytic cleavage of a GST-huntingtin fusion protein leads to the formation of insoluble high molecular weight protein aggregates only when the polyglutamine expansion is in the pathogenic range. Electron micrographs of these aggregates revealed a fibrillar or ribbon-like morphology, reminiscent of scrapie prions and beta-amyloid fibrils in Alzheimer's disease. Subcellular fractionation and ultrastructural techniques showed the in vivo presence of these structures in the brains of mice transgenic for the HD mutation. Our in vitro model will aid in an eventual understanding of the molecular pathology of HD and the development of preventative strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis.

              Extensive research causally links amyloid-beta peptide (A beta) to Alzheimer's disease, although the pathologically relevant A beta conformation remains unclear. A beta spontaneously aggregates into the fibrils that deposit in senile plaques. However, recent in vivo and in vitro reports describe a potent biological activity for oligomeric assemblies of A beta. To consistently prepare in vitro oligomeric and fibrillar forms of A beta 1-42, a detailed knowledge of how solution parameters influence structure is required. This manuscript represents the first study using a single chemically and structurally homogeneous unaggregated starting material to demonstrate that the formation of oligomers, fibrils, and fibrillar aggregates is determined by time, concentration, temperature, pH, ionic strength, and A beta species. We recently reported that oligomers inhibit neuronal viability 10-fold more than fibrils and approximately 40-fold more than unaggregated peptide, with oligomeric A beta 1-42-induced neurotoxicity significant at 10 nm. In addition, we were able to differentiate by structure and neurotoxic activity wild-type A beta1-42 from isoforms containing familial mutations (Dahlgren, K. N., Manelli, A. M., Stine, W. B., Jr., Baker, L. K., Krafft, G. A., and LaDu, M. J. (2002) J. Biol. Chem. 277, 32046-32053). Understanding the biological role of specific A beta conformations may define the link between A beta and Alzheimer's disease, re-focusing therapeutic approaches by identifying the pernicious species of A beta ultimately responsible for the cognitive dysfunction that defines the disease.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 November 2016
                : 27
                : 21
                : 3257-3272
                Affiliations
                [1]Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
                University of Massachusetts
                Author notes
                *Address correspondence to: Wolfgang Voos ( wolfgang.voos@ 123456uni-bonn.de ).

                G.C. performed most of the experiments. C.R. performed the ANT3 import. G.C. and M.B. performed the sucrose density gradient experiments. G.C. and W.V. designed the study, supervised the experiments, and wrote the manuscript.

                The authors declare that they have no conflict of interest.

                Article
                E16-05-0313
                10.1091/mbc.E16-05-0313
                5170859
                27630262
                87664ad6-45a7-40a6-9c87-acbcf90781b5
                © 2016 Cenini et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                History
                : 20 May 2016
                : 25 August 2016
                : 06 September 2016
                Categories
                Articles
                Cell Biology of Disease
                A Highlights from MBoC Selection

                Molecular biology
                Molecular biology

                Comments

                Comment on this article