4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nucleophilic Dearomatization of Activated Pyridines

      , ,
      Catalysts
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amongst nitrogen heterocycles of different ring sizes and oxidation statuses, dihydropyridines (DHP) occupy a prominent role due to their synthetic versatility and occurrence in medicinally relevant compounds. One of the most straightforward synthetic approaches to polysubstituted DHP derivatives is provided by nucleophilic dearomatization of readily assembled pyridines. In this article, we collect and summarize nucleophilic dearomatization reactions of - pyridines reported in the literature between 2010 and mid-2018, complementing and updating previous reviews published in the early 2010s dedicated to various aspects of pyridine chemistry. Since functionalization of the pyridine nitrogen, rendering a (transient) pyridinium ion, is usually required to render the pyridine nucleus sufficiently electrophilic to suffer the attack of a nucleophile, the material is organized according to the type of N-functionalization. A variety of nucleophilic species (organometallic reagents, enolates, heteroaromatics, umpoled aldehydes) can be productively engaged in pyridine dearomatization reactions, including catalytic asymmetric implementations, providing useful and efficient synthetic platforms to (enantioenriched) DHPs. Conversely, pyridine nitrogen functionalization can also lead to pyridinium ylides. These dipolar species can undergo a variety of dipolar cycloaddition reactions with electron-poor dipolarophiles, affording polycyclic frameworks and embedding a DHP moiety in their structures.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.

          Nitrogen heterocycles are among the most significant structural components of pharmaceuticals. Analysis of our database of U.S. FDA approved drugs reveals that 59% of unique small-molecule drugs contain a nitrogen heterocycle. In this review we report on the top 25 most commonly utilized nitrogen heterocycles found in pharmaceuticals. The main part of our analysis is divided into seven sections: (1) three- and four-membered heterocycles, (2) five-, (3) six-, and (4) seven- and eight-membered heterocycles, as well as (5) fused, (6) bridged bicyclic, and (7) macrocyclic nitrogen heterocycles. Each section reveals the top nitrogen heterocyclic structures and their relative impact for that ring type. For the most commonly used nitrogen heterocycles, we report detailed substitution patterns, highlight common architectural cores, and discuss unusual or rare structures.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N-activated pyridines.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transfer hydrogenation with Hantzsch esters and related organic hydride donors.

              In recent years, Hantzsch esters and their related organic hydride donors have been widely utilized in biomimetic approaches of asymmetric transfer hydrogenation (ATH) reactions. Various compounds containing C=C, C=N and C=O unsaturated functionalities could be reduced in the presence of organocatalysts or transition metal complexes, affording versatile chiral building blocks in high yields and excellent enantioselectivities under mild conditions. In this critical review, recent advances in this area are summarized and classified according to unsaturated functional groups being reduced and catalytic systems employed (91 references).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                CATACJ
                Catalysts
                Catalysts
                MDPI AG
                2073-4344
                December 2018
                December 06 2018
                : 8
                : 12
                : 632
                Article
                10.3390/catal8120632
                87ae5ba5-37c9-46b3-9d9b-e426c24b8c0a
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article