82
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      B Cells and Functional Antibody Responses to Combat Influenza

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccination against influenza is the most effective way to protect the population. Current vaccines provide protection by stimulating functional B- and T-cell responses; however, they are poorly immunogenic in particular segments of the population and need to be reformulated almost every year due to the genetic instability of the virus. Next-generation influenza vaccines should be designed to induce cross-reactivity, confer protection against pandemic outbreaks, and promote long-lasting immune responses among individuals at higher risk of infection. Multiple strategies are being developed for the induction of broad functional humoral immunity, including the use of adjuvants, heterologous prime-boost strategies, and epitope-based antigen design. The basic approach is to mimic natural responses to influenza virus infection by promoting cross-reactive neutralizing antibodies that directly prevent the infection. This review provides an overview of the mechanisms underlying humoral responses to influenza vaccination or natural infection, and discusses promising strategies to control influenza virus.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus.

          A new pandemic influenza A (H1N1) virus has emerged, causing illness globally, primarily in younger age groups. To assess the level of preexisting immunity in humans and to evaluate seasonal vaccine strategies, we measured the antibody response to the pandemic virus resulting from previous influenza infection or vaccination in different age groups. Using a microneutralization assay, we measured cross-reactive antibodies to pandemic H1N1 virus (2009 H1N1) in stored serum samples from persons who either donated blood or were vaccinated with recent seasonal or 1976 swine influenza vaccines. A total of 4 of 107 persons (4%) who were born after 1980 had preexisting cross-reactive antibody titers of 40 or more against 2009 H1N1, whereas 39 of 115 persons (34%) born before 1950 had titers of 80 or more. Vaccination with seasonal trivalent inactivated influenza vaccines resulted in an increase in the level of cross-reactive antibody to 2009 H1N1 by a factor of four or more in none of 55 children between the ages of 6 months and 9 years, in 12 to 22% of 231 adults between the ages of 18 and 64 years, and in 5% or less of 113 adults 60 years of age or older. Seasonal vaccines that were formulated with adjuvant did not further enhance cross-reactive antibody responses. Vaccination with the A/New Jersey/1976 swine influenza vaccine substantially boosted cross-reactive antibodies to 2009 H1N1 in adults. Vaccination with recent seasonal nonadjuvanted or adjuvanted influenza vaccines induced little or no cross-reactive antibody response to 2009 H1N1 in any age group. Persons under the age of 30 years had little evidence of cross-reactive antibodies to the pandemic virus. However, a proportion of older adults had preexisting cross-reactive antibodies. 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies.

            Influenza viruses pose a significant threat to the public and are a burden on global health systems. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem and the receptor binding site on the head. Antibodies elicited by a 1999 haemagglutinin-nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Severe respiratory disease concurrent with the circulation of H1N1 influenza.

              In the spring of 2009, an outbreak of severe pneumonia was reported in conjunction with the concurrent isolation of a novel swine-origin influenza A (H1N1) virus (S-OIV), widely known as swine flu, in Mexico. Influenza A (H1N1) subtype viruses have rarely predominated since the 1957 pandemic. The analysis of epidemic pneumonia in the absence of routine diagnostic tests can provide information about risk factors for severe disease from this virus and prospects for its control. From March 24 to April 29, 2009, a total of 2155 cases of severe pneumonia, involving 821 hospitalizations and 100 deaths, were reported to the Mexican Ministry of Health. During this period, of the 8817 nasopharyngeal specimens that were submitted to the National Epidemiological Reference Laboratory, 2582 were positive for S-OIV. We compared the age distribution of patients who were reported to have severe pneumonia with that during recent influenza epidemics to document an age shift in rates of death and illness. During the study period, 87% of deaths and 71% of cases of severe pneumonia involved patients between the ages of 5 and 59 years, as compared with average rates of 17% and 32%, respectively, in that age group during the referent periods. Features of this epidemic were similar to those of past influenza pandemics in that circulation of the new influenza virus was associated with an off-season wave of disease affecting a younger population. During the early phase of this influenza pandemic, there was a sudden increase in the rate of severe pneumonia and a shift in the age distribution of patients with such illness, which was reminiscent of past pandemics and suggested relative protection for persons who were exposed to H1N1 strains during childhood before the 1957 pandemic. If resources or vaccine supplies are limited, these findings suggest a rationale for focusing prevention efforts on younger populations. 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                30 June 2015
                2015
                : 6
                : 336
                Affiliations
                [1] 1Research Center, Novartis Vaccines and Diagnostics S.r.l. (a GSK Company) , Siena, Italy
                [2] 2Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Università degli Studi di Roma “La Sapienza” , Rome, Italy
                Author notes

                Edited by: Marc H. V. Van Regenmortel, University of Strasbourg, France

                Reviewed by: Susanne Modrow, University of Regensburg, Germany; Jose Esparza, University of Maryland School of Medicine, USA

                *Correspondence: Giuseppe Lofano, Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA, glofano@ 123456mgh.harvard.edu ; Sylvie Bertholet, Novartis Vaccines and Diagnostics S.r.l. (A GSK Company), Research Center, via Fiorentina 1, Siena 53100, Italy, sylvie.c.bertholet-girardin@ 123456gsk.com

                Present address: Giuseppe Lofano, Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA

                Specialty section: This article was submitted to Immunotherapies and Vaccines, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2015.00336
                4485180
                26175732
                88ca15e5-ed75-4b8d-a608-a1dec56e188a
                Copyright © 2015 Lofano, Kumar, Finco, Del Giudice and Bertholet.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 April 2015
                : 15 June 2015
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 80, Pages: 7, Words: 6044
                Categories
                Immunology
                Mini Review

                Immunology
                influenza,hemagglutinin,functional antibody responses,universal influenza vaccine,neutralizing antibodies,vaccination strategies

                Comments

                Comment on this article