133
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reprogramming of the Macrophage Transcriptome in Response to Interferon-γ and Mycobacterium tuberculosis : Signaling Roles of Nitric Oxide Synthase-2 and Phagocyte Oxidase

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophage activation determines the outcome of infection by Mycobacterium tuberculosis (Mtb). Interferon-γ (IFN-γ) activates macrophages by driving Janus tyrosine kinase (JAK)/signal transducer and activator of transcription–dependent induction of transcription and PKR-dependent suppression of translation. Microarray-based experiments reported here enlarge this picture. Exposure to IFN-γ and/or Mtb led to altered expression of 25% of the monitored genome in macrophages. The number of genes suppressed by IFN-γ exceeded the number of genes induced, and much of the suppression was transcriptional. Five times as many genes related to immunity and inflammation were induced than suppressed. Mtb mimicked or synergized with IFN-γ more than antagonized its actions. Phagocytosis of nonviable Mtb or polystyrene beads affected many genes, but the transcriptional signature of macrophages infected with viable Mtb was distinct. Studies involving macrophages deficient in inducible nitric oxide synthase and/or phagocyte oxidase revealed that these two antimicrobial enzymes help orchestrate the profound transcriptional remodeling that underlies macrophage activation.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.

          Through the study of transcriptional activation in response to interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma), a previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that then phosphorylate substrate proteins called STATs (signal transducers and activators of transcription). The phosphorylated STAT proteins move to the nucleus, bind specific DNA elements, and direct transcription. Recognition of the molecules involved in the IFN-alpha and IFN-gamma pathway has led to discoveries that a number of STAT family members exist and that other polypeptide ligands also use the Jak-STAT molecules in signal transduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional discovery via a compendium of expression profiles.

            Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disseminated tuberculosis in interferon gamma gene-disrupted mice

              The expression of protective immunity to Mycobacterium tuberculosis in mice is mediated by T lymphocytes that secrete cytokines. These molecules then mediate a variety of roles, including the activation of parasitized host macrophages, and the recruitment of other mononuclear phagocytes to the site of the infection in order to initiate granuloma formation. Among these cytokines, interferon gamma (IFN-gamma) is believed to play a key role is these events. In confirmation of this hypothesis, we show in this study that mice in which the IFN-gamma gene has been disrupted were unable to contain or control a normally sublethal dose of M. tuberculosis, delivered either intravenously or aerogenically. In such mice, a progressive and widespread tissue destruction and necrosis, associated with very high numbers of acid- fast bacilli, was observed. In contrast, despite the lack of protective immunity, some DTH-like reactivity could still be elicited. These data, therefore, indicate that although IFN-gamma may not be needed for DTH expression, it plays a pivotal and essential role in protective cellular immunity to tuberculosis infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                15 October 2001
                : 194
                : 8
                : 1123-1140
                Affiliations
                [a ]Department of Microbiology and Immunology, Weill Medical College of Cornell University, the
                [b ]Laboratory of Computational Genomics, The Rockefeller University,
                [c ]Immunology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021
                [d ]Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
                [e ]Affymetrix, Inc., Santa Clara, CA 95051
                Article
                011175
                10.1084/jem.194.8.1123
                2193509
                11602641
                8ade7c43-9918-45a3-b002-90f68cc21f3d
                © 2001 The Rockefeller University Press
                History
                : 9 July 2001
                : 30 August 2001
                : 14 September 2001
                Categories
                Original Article

                Medicine
                innate immunity,microarray analysis,macrophage activation,phagocytosis,gene expression
                Medicine
                innate immunity, microarray analysis, macrophage activation, phagocytosis, gene expression

                Comments

                Comment on this article