21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Vivo Protective Effects of Nootkatone against Particles-Induced Lung Injury Caused by Diesel Exhaust Is Mediated via the NF-κB Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Numerous studies have shown that acute particulate air pollution exposure is linked with pulmonary adverse effects, including alterations of pulmonary function, inflammation, and oxidative stress. Nootkatone, a constituent of grapefruit, has antioxidant and anti-inflammatory effects. However, the effect of nootkatone on lung toxicity has not been reported so far. In this study we evaluated the possible protective effects of nootkatone on diesel exhaust particles (DEP)-induced lung toxicity, and the possible mechanisms underlying these effects. Mice were intratracheally (i.t.) instilled with either DEP (30 µg/mouse) or saline (control). Nootkatone was given to mice by gavage, 1 h before i.t. instillation, with either DEP or saline. Twenty-four hours following DEP exposure, several physiological and biochemical endpoints were assessed. Nootkatone pretreatment significantly prevented the DEP-induced increase in airway resistance in vivo, decreased neutrophil infiltration in bronchoalveolar lavage fluid, and abated macrophage and neutrophil infiltration in the lung interstitium, assessed by histolopathology. Moreover, DEP caused a significant increase in lung concentrations of 8-isoprostane and tumor necrosis factor α, and decreased the reduced glutathione concentration and total nitric oxide activity. These actions were all significantly alleviated by nootkatone pretreatment. Similarly, nootkatone prevented DEP-induced DNA damage and prevented the proteolytic cleavage of caspase-3. Moreover, nootkatone inhibited nuclear factor-kappaB (NF-κB) induced by DEP. We conclude that nootkatone prevented the DEP-induced increase in airway resistance, lung inflammation, oxidative stress, and the subsequent DNA damage and apoptosis through a mechanism involving inhibition of NF-κB activation. Nootkatone could possibly be considered a beneficial protective agent against air pollution-induced respiratory adverse effects.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis

          Background Short-term exposure to outdoor fine particulate matter (particles with a median aerodynamic diameter <2.5 μm (PM2.5)) air pollution has been associated with adverse health effects. Existing literature reviews have been limited in size and scope. Methods We conducted a comprehensive, systematic review and meta-analysis of 110 peer-reviewed time series studies indexed in medical databases to May 2011 to assess the evidence for associations between PM2.5 and daily mortality and hospital admissions for a range of diseases and ages. We stratified our analyses by geographical region to determine the consistency of the evidence worldwide and investigated small study bias. Results Based upon 23 estimates for all-cause mortality, a 10 µg/m3 increment in PM2.5 was associated with a 1.04% (95% CI 0.52% to 1.56%) increase in the risk of death. Worldwide, there was substantial regional variation (0.25% to 2.08%). Associations for respiratory causes of death were larger than for cardiovascular causes, 1.51% (1.01% to 2.01%) vs 0.84% (0.41% to 1.28%). Positive associations with mortality for most other causes of death and for cardiovascular and respiratory hospital admissions were also observed. We found evidence for small study bias in single-city mortality studies and in multicity studies of cardiovascular disease. Conclusions The consistency of the evidence for adverse health effects of short-term exposure to PM2.5 across a range of important health outcomes and diseases supports policy measures to control PM2.5 concentrations. However, reasons for heterogeneity in effect estimates in different regions of the world require further investigation. Small study bias should also be considered in assessing and quantifying health risks from PM2.5.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers.

            Several epidemiologic studies have demonstrated a consistent association between levels of particulate matter (PM) in the ambient air with increases in cardiovascular and respiratory mortality and morbidity. Diesel exhaust (DE), in addition to generating other pollutants, is a major contributor to PM pollution in most places in the world. Although the epidemiologic evidence is strong, there are as yet no established biological mechanisms to explain the toxicity of PM in humans. To determine the impact of DE on human airways, we exposed 15 healthy human volunteers to air and diluted DE under controlled conditions for 1 h with intermittent exercise. Lung functions were measured before and after each exposure. Blood sampling and bronchoscopy were performed 6 h after each exposure to obtain airway lavages and endobronchial biopsies. While standard lung function measures did not change following DE exposure, there was a significant increase in neutrophils and B lymphocytes in airway lavage, along with increases in histamine and fibronectin. The bronchial biopsies obtained 6 h after DE exposure showed a significant increase in neutrophils, mast cells, CD4+ and CD8+ T lymphocytes along with upregulation of the endothelial adhesion molecules ICAM-1 and VCAM-1, with increases in the numbers of LFA-1+ cells in the bronchial tissue. Significant increases in neutrophils and platelets were observed in peripheral blood following DE exposure. This study demonstrates that at high ambient concentrations, acute short-term DE exposure produces a well-defined and marked systemic and pulmonary inflammatory response in healthy human volunteers, which is underestimated by standard lung function measurements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension: A Systematic Review and Meta-Analysis.

              Hypertension is a major disease of burden worldwide. Previous studies have indicated that air pollution might be a risk factor for hypertension, but the results were controversial. To fill this gap, we performed a meta-analysis of epidemiological studies to investigate the associations of short-term and long-term exposure to ambient air pollutants with hypertension. We searched all of the studies published before September 1, 2015, on the associations of ozone (O3), carbon monoxide (CO), nitrogen oxide (NO2 and NOX), sulfur dioxide (SO2), and particulate matter (PM10 and PM2.5) with hypertension in the English electronic databases. A pooled odds ratio (OR) for hypertension in association with each 10 μg/m(3) increase in air pollutant was calculated by a random-effects model (for studies with significant heterogeneity) or a fixed-effect model (for studies without significant heterogeneity). A total of 17 studies examining the effects of short-term (n=6) and long-term exposure (n=11) to air pollutants were identified. Short-term exposure to SO2 (OR=1.046, 95% confidence interval [CI]: 1.012-1.081), PM2.5 (OR=1.069, 95% CI: 1.003-1.141), and PM10 (OR=1.024, 95% CI: 1.016-1.032) were significantly associated with hypertension. Long-term exposure (a 10 μg/m(3) increase) to NO2 (OR=1.034, 95% CI: 1.005-1.063) and PM10 (OR=1.054, 95% CI: 1.036-1.072) had significant associations with hypertension. Exposure to other ambient air pollutants (short-term exposure to NO2, O3, and CO and long-term exposure to NOx, PM2.5, and SO2) also had positive relationships with hypertension, but lacked statistical significance. Our results suggest that short-term or long-term exposure to some air pollutants may increase the risk of hypertension.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                26 February 2018
                March 2018
                : 10
                : 3
                : 263
                Affiliations
                [1 ]Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE; sumayab@ 123456uaeu.ac.ae (S.B.); priyay@ 123456uaeu.ac.ae (P.Y.)
                [2 ]Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE; suhaila@ 123456uaeu.ac.ae
                [3 ]Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE; hamadinasro@ 123456uaeu.ac.ae
                [4 ]Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Al-Khod, Oman; alibadreldin@ 123456hotmail.com
                Author notes
                [* ]Correspondence: anemmar@ 123456uaeu.ac.ae or anemmar@ 123456hotmail.com ; Tel.: +971-3-713-7533; Fax: +971-3-767-1966
                Article
                nutrients-10-00263
                10.3390/nu10030263
                5872681
                29495362
                8b2aa114-11f0-417c-96a9-bd40bdc9b2ff
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 January 2018
                : 23 January 2018
                Categories
                Article

                Nutrition & Dietetics
                diesel exhaust particles,nootkatone,airway resistance,lung,oxidative stress,inflammation,nf-κb

                Comments

                Comment on this article