20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Alcohol inhibition of neurogenesis: A mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model

      , , ,
      Hippocampus
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adolescents diagnosed with an alcohol use disorder show neurodegeneration in the hippocampus, a region important for learning, memory, and mood regulation. This study examines a potential mechanism by which excessive alcohol intake, characteristic of an alcohol use disorder, produces neurodegeneration. As hippocampal neural stem cells underlie ongoing neurogenesis, a phenomenon that contributes to hippocampal structure and function, we investigated aspects of cell death and cell birth in an adolescent rat model of an alcohol use disorder. Immunohistochemistry of various markers along with Bromo-deoxy-Uridine (BrdU) injections were used to examine different aspects of neurogenesis. After 4 days of binge alcohol exposure, neurogenesis was decreased by 33 and 28% at 0 and 2 days after the last dose according to doublecortin expression. To determine whether this decrease in neurogenesis was due to effects on neural stem cell proliferation, quantification of BrdU-labeled cells revealed a 21% decrease in the dentate gyrus of alcohol-exposed brains. Cell survival and phenotype of BrdU-labeled cells were assessed 28 days after alcohol exposure and revealed a significant, 50% decrease in the number of surviving cells in the alcohol-exposed group. Reduced survival was supported by significant increases in the number of pyknotic-, FluoroJade B positive-, and TUNEL-positive cells. However, so few cells were TUNEL-positive that cell death is likely necrotic in this model. Although alcohol decreased the number of newborn cells, it did not affect the percentage of cells that matured into neurons (differentiation). Thus, our data support that in a model of an adolescent alcohol use disorder, neurogenesis is impaired by two mechanisms: alcohol-inhibition of neural stem cell proliferation and alcohol effects on new cell survival. Remarkably, alcohol inhibition of neurogenesis may outweigh the few dying cells per section, which implies that alcohol inhibition of neurogenesis contributes to hippocampal neurodegeneration in alcohol use disorders. 2009 Wiley-Liss, Inc.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation

          Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the single-cell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxy- transferase, and then stained using avidin-conjugated peroxidase. The reaction is specific, only nuclei located at positions where PCD is expected are stained. The initial screening includes: small and large intestine, epidermis, lymphoid tissues, ovary, and other organs. A detailed analysis revealed that the process is initiated at the nuclear periphery, it is relatively short (1-3 h from initiation to cell elimination) and that PCD appears in tissues in clusters. The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adolescent cortical development: a critical period of vulnerability for addiction.

            Cortical growth and remodeling continues from birth through youth and adolescence to stable adult levels changing slowly into senescence. There are critical periods of cortical development when specific experiences drive major synaptic rearrangements and learning that only occur during the critical period. For example, visual cortex is characterized by a critical period of plasticity involved in establishing visual acuity. Adolescence is defined by characteristic behaviors that include high levels of risk taking, exploration, novelty and sensation seeking, social interaction and play behaviors. In addition, adolescence is the final period of development of the adult during which talents, reasoning and complex adult behaviors mature. This maturation of behaviors corresponds with periods of marked changes in neurogenesis, cortical synaptic remodeling, neurotransmitter receptors and transporters, as well as major changes in hormones. Frontal cortical development is later in adolescence and likely contributes to refinement of reasoning, goal and priority setting, impulse control and evaluating long and short term rewards. Adolescent humans have high levels of binge drinking and experimentation with other drugs. This review presents findings supporting adolescence as a critical period of cortical development important for establishing life long adult characteristics that are disrupted by alcohol and drug use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration.

              Fluoro-Jade B, like its predecessor Fluoro-Jade, is an anionic fluorescein derivative useful for the histological staining of neurons undergoing degeneration. However, Fluoro-Jade B has an even greater specific affinity for degenerating neurons. This notion is supported by the conspicuous staining of degenerating neuronal elements with minimal background staining. This improved signal-to-noise ratio means that fine neuronal processes including distal dendrites, axons and axon terminals can be more readily detected and documented. Although the staining time and dye concentration are reduced, the method is as rapid, simple and reliable as the original Fluoro-Jade technique. Like Fluoro-Jade, Fluoro-Jade B is compatible with a number of other labeling procedures including immunofluorescent and fluorescent Nissl techniques.
                Bookmark

                Author and article information

                Journal
                HIPO
                Hippocampus
                Hippocampus
                Wiley
                10509631
                10981063
                2009
                2009
                : NA
                Article
                10.1002/hipo.20665
                2861155
                19554644
                8b3e78cb-1d96-4d80-b253-86153734c91c
                © 2009

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article