2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Animal models of scarring control

      Eye
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Filtration surgery has, for the past 50 years been key in the treatment of glaucoma yet a significant issue in the long-term success of such surgery is fibrosis limiting aqueous drainage. Numerous methods have been used to reduce such scarring after filtration surgery and animal models have been important in the development of such techniques. First animal models have been central in understanding molecular and cellular changes occurring in fibrosis and thus which pathways might be valuable therapeutic. Secondly animal models have been critical in determining which of these therapies is likely to be most worthwhile. Having said that animals differ substantially from humans in the anatomy of their aqueous drainage pathways and in the mechanisms of fibrotic change. Rodents and lagomorphs vary more markedly from humans than do primates at an anatomic, biochemical and physiological level, and thus the latter might seem more appropriate as models for antifibrotic techniques. However the welfare implications, and thus ethical issues, in using primates are more concerning than with rodents or rabbits and efforts to refine, reduce and replace living animals in such model systems are crucially important. One problem is that the animal models normally involve healthy eyes, not ones with glaucoma. In veterinary ophthalmology we see large numbers of dogs with glaucoma, many of which have filtration implants placed. Potentially these could be a valuable animal model where benefits of antifibrotic treatment could benefit the animals involved and the research seeking to optimise such treatments.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid

          Tumor ascites fluids from guinea pigs, hamsters, and mice contain activity that rapidly increases microvascular permeability. Similar activity is also secreted by these tumor cells and a variety of other tumor cell lines in vitro. The permeability-increasing activity purified from either the culture medium or ascites fluid of one tumor, the guinea pig line 10 hepatocarcinoma, is a 34,000- to 42,000-dalton protein distinct from other known permeability factors.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis.

              IL-1beta is one of a family of proinflammatory cytokines thought to be involved in many acute and chronic diseases. Although it is considered to participate in wound repair, no major role has been attributed to IL-1beta in tissue fibrosis. We used adenoviral gene transfer to transiently overexpress IL-1beta in rat lungs after intratracheal administration. The high expression of IL-1beta in the first week after injection was accompanied by local increase of the proinflammatory cytokines IL-6 and TNF-alpha and a vigorous acute inflammatory tissue response with evidence of tissue injury. The profibrotic cytokines PDGF and TGF-beta1 were increased in lung fluid samples 1 week after peak expression of IL-1beta. Although PDGF returned to baseline in the third week, TGF-beta1 showed increased concentrations in bronchoalveolar lavage fluid for up to 60 days. This was associated with severe progressive tissue fibrosis in the lung, as shown by the presence of myofibroblasts, fibroblast foci, and significant extracellular accumulations of collagen and fibronectin. These data directly demonstrate how acute tissue injury in the lung, initiated by a highly proinflammatory cytokine, IL-1beta, converts to progressive fibrotic changes. IL-1beta should be considered a valid target for therapeutic intervention in diseases associated with fibrosis and tissue remodeling.
                Bookmark

                Author and article information

                Journal
                Eye
                Eye
                Springer Science and Business Media LLC
                0950-222X
                1476-5454
                December 10 2019
                Article
                10.1038/s41433-019-0727-1
                7002449
                31822860
                8d8607d7-4cff-4013-944b-9edd08806e17
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article